• Title/Summary/Keyword: Mg-Ni

Search Result 945, Processing Time 0.056 seconds

Compound K attenuates hyperglycemia by enhancing glucagon-like peptide-1 secretion through activating TGR5 via the remodeling of gut microbiota and bile acid metabolism

  • Tian, Fengyuan;Huang, Shuo;Xu, Wangda;Chen, Lan;Su, Jianming;Ni, Haixiang;Feng, Xiaohong;Chen, Jie;Wang, Xi;Huang, Qi
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.780-789
    • /
    • 2022
  • Background: Incretin impairment, characterized by insufficient secretion of L-cell-derived glucagon-like peptide-1 (GLP-1), is a defining step of type 2 diabetes mellitus (T2DM). Ginsenoside compound K (CK) can stimulate GLP-1 secretion; however, the potential mechanism underlying this effect has not been established. Methods: CK (40 mg/kg) was administered orally to male db/db mice for 4 weeks. The body weight, oral glucose tolerance, GLP-1 secretion, gut microbiota sequencing, bile acid (BA) profiles, and BA synthesis markers of each subject were then analyzed. Moreover, TGR5 expression was evaluated by immunoblotting and immunofluorescence, and L-cell lineage markers involved in L-cell abundance were analyzed. Results: CK ameliorated obesity and impaired glucose tolerance in db/db mice by altering the gut microbiota, especially Ruminococcaceae family, and this changed microbe was positively correlated with secondary BA synthesis. Additionally, CK treatment resulted in the up-regulation of CYP7B1 and CYP27A1 and the down-regulation of CYP8B1, thereby shifting BA biosynthesis from the classical pathway to the alternative pathway. CK altered the BA pool by mainly increasing LCA and DCA. Furthermore, CK induced L-cell number expansion leading to enhanced GLP-1 release through TGR5 activation. These increases were supported by the upregulation of genes governing GLP-1 secretion and L-cell differentiation. Conclusions: The results indicate that CK improves glucose homeostasis by increasing L-cell numbers, which enhances GLP-1 release through a mechanism partially mediated by the gut microbiota-BA-TGR5 pathway. Therefore, that therapeutic attempts with CK might be useful for patients with T2DM.

Mineralogy and Geochemistry of Shale Deposits in the Lower Anambra Basin, Nigeria: Implication for Provenance, Tectonic Setting and Depositional Environment

  • Olugbenga Okunlola;Agonsi Udodirim Lydia;Aliyu Ohiani Umaru;Raymond Webrah Kazapoe;Olusegun G. Olisa
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.799-816
    • /
    • 2023
  • Mineralogical and geochemical studies of shales within the Lower Anambra Basin was conducted to unravel the depositional environment, provenance, maturity, paleo-weathering conditions, and tectonic settings. Mineralogical studies conducted using X-ray diffraction analysis revealed that the samples were composed of kaolinite, montmorillonite, chlorite, and illite. KaolinIite is the dominant mineral, constituting approximately 41.5% of the bulk composition, whereas the non-clay minerals are quartz, ilmenite, and sillimanite. Geochemical analysis showed a predominance of SiO2, Al2O3, and Fe2O3 contents of the shale samples with mean values of 52.29%, 14.09%, and 6.15% for Imo Shale (IS); 52.31%, 16.70%, and 7.39% for Mamu Shale (MS); 43.21%, 21.33%, and 10.36% for Enugu Shale (ES); 53.35%, 15.64%, and 7.17% for Nkporo Shale (NS); and 51.24%, 17.25%, and 7.78% for Agwu Shale (AS). However, the shales were depleted in Na2O, MgO, K2O, MnO, TiO2, CaO, and P2O5. The trace element ratios of Ni/Co and Cu/Zn of the shale suggest an oxic depositional environment. The average SiO2 vs. Al2O3 ratio of the shales indicated textural maturity. Compared to the PAAS standard, the shales plot below the PAAS value of 0.85, suggesting a high degree of maturity and intensive chemical weathering, further confirmed on a CIA vs. PIA plot. On log (K2O/Na2O) against SiO2 and tectonic setting discriminant function diagrams, the shales plot mostly in the field of passive continental margin tectonic setting. The discriminant function diagrams as well as Al2O3/TiO2 ratio of the shales showed that they were derived from a mixed source (mafic and intermediate igneous rocks).

Decomposition of Leaf Litter Containing Heavy Metals in the Andong Serpentine Area, Korea (안동 사문암지대의 중금속 함유 낙엽의 분해)

  • Ryou, Sae-Han;Kim, Jeong-Myung;Cha, Sang-Seub;Shim, Jae-Kuk
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.4
    • /
    • pp.426-435
    • /
    • 2010
  • The present study attempts to compare the soil chemical characteristics and biological activities (i.e. microbial biomass and soil enzyme activities), and litter decomposition rate of Arundinella hirta and Miscanthus sinensis var. purpurascens) collected from serpentine and non-serpentine sites by litter bag techniques at serpentine and non-serpentine field experiment sites over a 9-month period. The serpentine soil showed higher pH and soil alkaliphosphatase activity, and lower soil dehydrogenase and urease activities than the non-serpentine soil. Microbial biomass-N at the serpentine soil was larger than the non-serpentine soil, although the microbial biomass-C and microbial biomass-N represented no significant difference between serpentine and non-serpentine soil. These results suggest that the larger microbial biomass-N caused the lower C/N in serpentine soil. At the end of the experiment, the litter samples of A. hirta and M. sinensis collected from serpentine soil revealed a 39.8% and 38.5% mass loss, and the litter sample from non-serpentine soil also showed a 41.1% and 41.7% mass loss at the serpentine site. On the other hand, at the non-serpentine site, 42.2%, 37.4%, and 46.8%, 44.8% were respectively shown. These results demonstrate that the litter decomposition rate is more intensely affected by the heavy metal content of leaf litter than soil contamination. Moreover, the litter collected from the serpentine soil had a lower C/N, whereas the litter decomposition rate was slower than the litter from the non-serpentine soil, because the heavy metal inhibition activities on the litter decomposition process were more conspicuous than the effect of litter qualities such as C/N ratio or lignin/N. The nutrient element content in the decomposing litter was gradually leached out, but heavy metals and Mg were accumulated in the decaying litter. This phenomenon was conspicuous at the serpentine site during the process of decomposition.

Studies on the Separation and Preconcentration of Metal Ions by Chelating Resin containing (Polystyrene-divinylbenzene)-thiazolylazo Phenol Derivatives(I) ((Polystyrene-divinylbenzene)-thiazolylazo phenol형 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구(I))

  • Lim, Jae-Hee;Kim, Min-Kyun;Lee, Chang-Hun;Lee, Won
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.279-291
    • /
    • 1996
  • The new chelating resins, XAD-2, 4, 16-TAC and XAD-2, 4, 16-TAO were synthesized by Amberlite XAD-2, XAD-4, and XAD-16 macroreticular resins with 2-(2-thiazolylazo)-p-cresol(TAC) and 4-(2-thiazolylazo)orcinol(TAO) as functional groups and were characterized by elemental analysis and FT-IR spectrometry. It was found that the content of functional group in chelating resin was 0.60mmol/g in XAD-16-TAC and 0.68mmol/g in XAD-16-TAO respectively. The chelating resins were stable in acidic and alkaline solution and can be reused over 10 times. The sorption behavior of some metalions to two chelating resins was investigated by batch method, which included batch equilibrium, effect of pH, coexisting ions and masking agent. For the optimum condition of sorption, the time required for equilibrium was about 1 hour and optimum pH was 5. In the presence of anions such as ${SO_4}^{2-}$ and $CH_3COO^-$, the sorption of U(VI) ion was slightly reduced but other anions such as $Cl^-$ and $NO{_3}^-$ revealed no interference effect. Also, sorption capacity of U(VI) ion was decreased by addition of $CO{_3}^{2-}$ ion because of complex formation of $[UO_2(CO_3)_3]^{4-}$, but alkali metals and alkali earth metals including Na(I), K(I), Mg(II), and Ca(II) were not affected for the sorption extent. Masking agent, NTA showed better separation efficiency of U(VI) ion from coexisting metal ions such as Th(IV), Zr(IV), Hf(IV), Cu(II), Cd(II), Pb(II), Ni(II), Zn(II) and Mn(II) than EDTA, CDTA.

  • PDF

Heavy Metal Contents and Safety Evaluation of Commercial Salts in Seoul (서울시 유통 소금의 중금속 함량 및 안전성 평가)

  • Kim, Ae-Kyung;Cho, Sung-Ja;Kwak, Jae-Eun;Kum, Jin-Young;Kim, Il-Young;Kim, Jung-Hun;Chae, Young-Zoo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.1
    • /
    • pp.129-135
    • /
    • 2012
  • This study was to investigate the heavy metal content of 55 commercial salts in the Seoul area. There were 22 types of solar sea salt, 17 types of processed salt and 16 types of reworked salt. Looked at another way, there were 22 types of domestic salt and 33 types of salt imported from France, the U.S., Japan, Australia, New Zealand, and Argentina. The samples were measured using both a mercury analyzer and an Inductively-Coupled Plasma Optical Emission Spectrometer (ICP-OES). The average heavy metal contents for commercial salts were Pb $0.281{\pm}0.344$, Cd $0.035{\pm}0.221$, Cr $0.364{\pm}0.635$, Cu $0.182{\pm}0.313$, As $0.046{\pm}0.062$, Ni $0.155{\pm}0.247$, Al $5.753{\pm}10.746$, Co $0.028{\pm}0.211$ and Hg $0.001{\pm}0.001$ mg/kg. The leads were detected highly in solar sea salt rather than in processed salt or reworked salt. Also chrome, arsenic and nickel were found more in processed salt. There were large differences in aluminum content between imported solar sea salt and processed salt. Aluminum was highly detected in French products, showing that salt can be affected by regional differences. The weekly average intakes of Pb, Cd, Cr, Cu, and Hg from commercial salt were 1.652% (0.000~6.754), 0.372% (0.000~7.214), 3.177% (0.000~26.279), 0.008% (0.001~0.049), and 0.031% (0.000~0.094) respectively compared with Provisional Tolerable Weekly Intakes established by the Joint FAO/WHO Expert Committee for the evaluation of food safety. The content of heavy metals from commercial salts was determined to be at safe levels.

Mineralogical and Geochemical Changes During the Reaction of Cr(VI) with Organic Carbon (6가 크롬과 유기탄소와의 반응에 따른 광물학적 지구화학적 변화)

  • Kim, Yeongkyoo;Park, Young-Gyu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.151-160
    • /
    • 2013
  • A column experiment was carried out to study the reaction of Cr(VI) with organic carbon. Chemical analysis for the effluent collected at different times after the reaction of Cr(VI) with organic carbon in compost and SEM observation for the solid samples remaining after the reaction were conducted. Cr(VI) supplied to the column was not detected in the effluent from column at initial stage, but the concentration of Cr(VI) increased abruptly and maintained the initial supplied concentration (20 mg/kg), indicating that Cr(VI) was effectively removed from the solution at the first state. In general, the concentrations of cations and anions with the exception of $PO_4$ increased and decreased again. Considering that most of these ions were not detected or showed very low concentration, these ions are considered to originate from the organic carbon in the column. SEM observation showed that Cr was coprecipitated with Fe on the surface of organic carbon with small amount of other metals such as Mn, No, and Co. This indicated that on the reduction condition on the organic carbon, Cr(VI) was reduced to $Cr(OH)_3$ and coprecipitated with $Fe(OH)_3$, and that Fe is very important in the precipitation of Cr. After the soluble Fe and Mn are not dissolved any more, $Cr(OH)_3$ is not precipitated. Different from other ions, the concentrations of $PO_4$ decreased and increased, which was thought to be the result of the release of $PO_4$ from organic carbon and sorption on the precipitates. After the maximum sorption on the precipitates and no further release of Fe, the concentration of $PO_4$ returns to its original value measured for the ones released from the organic carbon.

The Behavior of Dissolved and Particulate Phases of Trace Elements within the Watershed of Juam Reservoir (주암호 집수유역 내 용존 및 입자상 미량원소의 거동 특성)

  • Lee, Pyeong-Koo;Chi, Se-Jung;Youm, Seung-Jun
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.405-425
    • /
    • 2008
  • In order to investigate the amounts of trace elements flowing into reservoir, and to elucidate the relationship between trace element mobility and fraction size, the stream water and sediment samples were collected from thirty-two sites of the 3rd or 4th order stream within watershed surrounding the Juam reservoir. Chemical analyses of trace elements (As, Cd, Cr, Cu, Ni, Pb and Zn) for all samples were completed, and additionally cationi and anion for stream water samples. Considering the distribution of rocks and contamination sources in watershed, the eight stream sediments were selected from typical sites representing study areas, and we determined the concentrations of trace elements according to size fractions ($2\;mm{\sim}200\;{\mu}m$, $200{\sim}100\;{\mu}m$, $100{\sim}50\;{\mu}m$, $50{\sim}20\;{\mu}m$ and < $20\;{\mu}m$). The correlation relationships between concentrations and size fractions of stream sediments were important to identify the hydro-geochemical behavior of trace elements that flow into Juam reservoir. Stream waters showed four water types (Ca-Mg-$HCO_3$, Ca-Na-$HCO_3$-Cl, Ca-Na-$HCO_3-SO_4$, Ca-Na-$HCO_3$) depending on pollution sources such as coal mine, metal mine, farm-land and dwellings. Concentrations of trace elements increased clearly with the decrease in size fractions of stream sediments. Concentrations of Cu, Pb and Zn increased dramatically in silt size (< $20\;{\mu}m$) fraction, while As had high concentrations in sand size ($2\;mm{\sim}100\;{\mu}m$) fraction in downstream sediments of metal mines. These indicate that Cu, Zn, and Pb moved into Juam reservoir easily in the adsorbed form on silt size grain in sediments, and As was transported as As-bearing mineral facies, resulting in its less chance to reach into Juam reservoir.

Fertility Status in Northeastern Alpine Soils of South Korea with Cultivation of Vegetable Crops (강원도 고랭지 채소 재배지의 토양 비옥도관리 현황과 전망)

  • Yang, Jae-E.;Cho, Byong-Ok;Shin, Young-Oh;Kim, Jeong-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • Total upland area for cultivating the vegetable crops in the Alpine soils of Northeastern South Korea has been extending its limit to meet the increasing demand of vegetable food in recent decades. About 70% of these alpine soils are located in over 7% of the slope and most of vegetable crops have been cultivated intensively without practicing the best management systems. Thus, soil erosion and continuous cropping system have degenerated the soil fertility and shown detrimental effects on water quality. We initiated an intensive and extensive investigation to characterize the fertility problems encountered in these uplands. Objectives of this paper were to characterize the fertility status in the Alpine soils cultivated with vegetable crops for many years and to provide the recommendations for adequate soil management measures including fertilization and erosion control. Soils in general have good drainage with textural classes of loam or sandy loam. Their topographical characteristics tended to lead them to shallow plow layers, and the steepness of the terrain created erosion hazard. Of the soils examined, about 11% of uplands over 30% gradient was found in need of an urgent reforestation. A high content of gravel and firm hardness of soil attributed to inhibit the utilization of farm machinery and plant-root development. The average soil pH 5.6 was slightly low relative to pH 5.70 of the national average. Organic matter content was high compared with 2.0% of national average, but decreased with the prolonged cultivation periods. Available $P_2O_5$ concentration was unusually high due to the consequence of over dose application with chemical and organic fertilizers. Exchangeable cations as Ca, Mg, and K were appeared to be decreased in these regions with prolonging the cultivation periods. There were no significant differences in cation exchange capacity (CEC) and electrical conductivity (EC) among locations. Heavy metal contents were mostly lower than the threshold of danger level designated by Soil Environment Conservation Law of South Korea. Results indicated that a proper countermeasure and the best management practice should be immediately implemented to conserve the top soil and fertility in the Alpine regions.

  • PDF

Assessment of Fertilizer Efficiency of Pharmaceutical Byproduct and Cosmetic Industry Wastewater Sludge as Raw Materials of Compost (제약업종 부산물 및 화장품 제조업 폐수처리오니의 비효검정)

  • Lim, Dong-Kyu;Kwon, Soon-Ik;Lee, Seung-Hwan;So, Kyu-Ho;Sung, Ki-Suk;Koh, Mun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.2
    • /
    • pp.108-117
    • /
    • 2005
  • Pharmaceutical byproduct sludge and cosmetic industry wastewater sludge can be used as a raw material of compost. Effects of three types of pharmaceutical byproduct sludge and one type of cosmetic industry wastewater sludge on soil properties and red pepper growth were investigated in a field based concrete pot ($2{\times}2m$). These sludges and pig manure ($5Mg\;ha^{-1}$, dry basis) were incorporated into the upper of loam soil 30 days prior to transplanting red pepper. Changes in soil properties and contents of heavy metals and toxic organic compounds in soil and plant were measured. And also plant growth measurement and bioassay of soil phytotoxicity were included. Contents of heavy metals were increased in the soils treated with the sludges. Plant growth in the sludge treatments were mostly inferior to that of NPK treatment, especially in early stage. Content of N in plant was lower in all sludge treatments at early and middle growth stages, and it was especially caused by characteristics and concentration of nitrogen and organic matter of sludges. Total yield of red pepper was highest in the NPK treatment and followed by pharmaceutical sludge 3, pig manure, pharmaceutical sludge 1, and pharmaceutical sludge 2, and the yield of cosmetic sludge treatment was considerably lower than others. HEM and PAHs contents in soil of cosmetic sludge treatment were $4.80mg\;kg^{-1}$ and $2,263.2{\mu}g\;kg^{-1}$, respectively. Root elongation of lettuce exposed to the water extract of soil treated with cosmetic sludge was about 20% of that found in the test with soil extract of non fertilization treatment. At present, raw materials of compost were authorized according to the contents of organic matter, heavy metals and product processing. Toxic organic compounds analysis and bioassay would be helpful for authorization and assessment of suitability of raw materials of compost.

Cloning and Characterization of Phosphomannomutase/Phosphoglucomutase (pmm/pgm) Gene of Vibrio anguillarum Related to Synthesis of LPS (Lipopolysaccharide 생합성에 관여하는 Vibrio anguillarum의 phosphomannomutase/phosphoglucomutase 유전자 cloning과 특성)

  • Oh, Ryunkyoung;Moon, Soo Young;Cho, Hwa Jin;Jang, Won Je;Kim, Jang-Ho;Lee, Jong Min;Kong, In-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.355-362
    • /
    • 2016
  • The phosphomannomutase/phosphoglucomutase gene (pmm/pgm) of Vibrio anguillarum (the causative agent of fish vibriosis) was cloned, and the open reading frame corresponded to a protein with 446 amino acids. The pmm/pgm gene showed a significant degree of sequence homology with the previously reported genes from V. mimicus, V. vulnificus, V. splendidus, and V. harveyi, with 92.3%, 91.4%, 89.9%, and 89.9% amino acid identity, respectively. By reverse transcriptase-polymerase chain reaction, we found that the pmm/pgm gene was upregulated under cold stress condition. The PMM/PGM protein is known to catalyze the interconversion between mannose-1-phosphate and mannose-6-phosphate or glucose-1-phosphate and glucose-6-phosphate, which are important intermediates for lipopolysaccharide (LPS) biosynthesis. To confirm the role of PMM/PGM in the LPS biosynthetic pathway, we constructed a knock out mutant by homologous recombination. The respective LPSs were isolated from the V. anguillarum wild-type and mutant strains, and changes were compared by subjecting them to sodium dodecyl sulfate polyacrylamide gel electrophoresis. Based on the different patterns of the LPSs, we expect the pmm/pgm gene to have an important role in LPS biosynthesis. The pmm/pgm-deficient mutant of V. anguillarum will contribute to further studies about the role of LPS in V. anguillarum pathogenesis.