• Title/Summary/Keyword: Mg-Cu-Y alloy

Search Result 161, Processing Time 0.026 seconds

Synthesis of Amorphous Matrix Nano-composite in Al-Cu-Mg Alloy

  • Kim, Kang Cheol;Park, Sung Hyun;Na, Min Young;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.44 no.3
    • /
    • pp.105-109
    • /
    • 2014
  • The microstructure of as-quenched $Al_{70}Cu_{18}Mg_{12}$ alloy has been investigated in detail using transmission electron microscopy. Al nano-crystals about 5 nm with a high density are distributed in the amorphous matrix, indicating amorphous matrix nano-composite can be synthesized in Al-Cu-Mg alloy. The high density of Al nano-crystals indicates very high nucleation rate and sluggish growth rate during crystallization possibly due to limited diffusion rate of solute atoms of Cu and Mg during solute partitioning. The result of hardness measurement shows that the mechanical properties can be improved by designing a nano-composite structure where nanometer scale crystals are embedded in the amorphous matrix.

High Temperature Deformation Behavior of Sc Added Al-7.7wt%Zn-2.0wt%Mg-1.9wt%Cu Alloy (Sc을 첨가한 Al-7.7wt%Zn-2.0wt%Mg-1.9wt%Cu합금의 고온 변형거동)

  • Woo, Kee-Do;Ryu, Yong-Seok;Kim, Sug-Won;Deliang Zhang
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.819-824
    • /
    • 2003
  • The Al-7.7Zn-2.0Mg-1.9Cu-0.1Zr-0.1Sc alloy exhibited excellent elongation by the new thermomechanical treatment (TMT) process; solution treatment and furnace cooling\longrightarrowhot and cold rolling and then annealing for short time. Tensile test at high temperature from 430 to $500^{\circ}C$ has been performed with various strain rates using for the Al-7.7Zn-2.0Mg-1.9Cu-0.1Zr-0.1Sc alloy obtained by the TMT process. The elongation of the Al-7.7Zn-2.0Mg-1.9Cu-0.1Zr-0.1Sc was 550% tensile tested at $470^{\circ}C$ temperature and 2.2 $\times$ $10^{-3}$ $s^{-1}$ strain rate. The m value of Al-7.7Zn-2.0Mg-1.9Cu-0.1Zr-0.1Sc alloy deformed 85% increased from 0.33 to 0.46 with increasing total elongation. This new TMT process was very simple and easy to make the sheets in the company.

The Study on Fabrication and Sound Absorption Properties of Al-Zn-Mg-Cu Alloy Foams (Al-Zn-Mg-Cu 발포합금 제조 및 흡음특성에 관한 연구)

  • Jeong, Seung-Reung;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.31 no.3
    • /
    • pp.145-151
    • /
    • 2011
  • Metallic foam has been known as a functional material which can be used for absorption properties of energy and sound. The unique characteristics of Al foam of mechanical, acoustic, thermal properties depend on density, cell size distribution and cell size, and these characteristics expected to apply industry field. Al-Zn-Mg-Cu alloy foams was fabricated by following process; firstly melting the Al alloy, thickening process of addition of Ca granule to increased of viscosity, foaming process of addition of titanium hydride powder to make the pores, holding in the furnace to form of cooling down to the room temperature. Metal foams with various porosity level were manufactured by change the foaming temperature. Compressive strength of the Al alloy foams was 2 times higher at 88% porosity and 1.2 times higher at 92% porosity than pure Al foams. It's sound and vibration absorption coefficient were higher than pure Al foams and with increasing porosity.

LACBED Observation of Strain Fields due to Precipitates, Especially S-Phase Particles in Al-Cu-Mg Alloy (Al-Cu-Mg 합금의 석출입자, 특히 S-상 입자들에 의한 변형장의 LACBED 관찰)

  • Kim, Hwang-Su
    • Applied Microscopy
    • /
    • v.37 no.2
    • /
    • pp.123-133
    • /
    • 2007
  • The strain fields due to precipitates, especially S-phase $(Al_2CuMg)$ particles in Al-2.5Cu-1.5Mg wt.% alloy were first investigated with Large Angle Convergent Beam Electron Diffraction (LACBED) method. The work involves LACBED pattern simulations to estimate possibly the strength of the strain fields. To do this the morphology of S-particle was optimized as a cylindrical shape with $a_s$ axis, and the displacement vector of strain fields was assumed to be perpendicular to $a_s$ axis. With this simple model the reasonable fittings between the observed patterns of the strain fields and simulations were obtained. And in the early aging stage of the alloy the significant strain fields were not observed. As a result of this study it is expected that the strain fields due to S-phase precipitates in the stage with maximum hardness would make a complex networks to possibly contribute to hardiness of the alloy.

Influence of Ag Addition on the Mechanical Properties and Electrical Conductivity of Cu-Mg-P Alloys (Cu-Mg-P 합금의 기계적 성질과 전기전도도에 미치는 Ag첨가의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ki-Tae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.1
    • /
    • pp.10-16
    • /
    • 2010
  • The microstructure of Cu-Mg-P alloy sheet consisted of Cu matrix and very fine MgP precipitate, and it has been observed that the microstructure remains virtually unchanged by Ag additions up to 2%. Ag solutes were dissolved into the matrix and hardly found in the precipitates. The hardness increased with increase of the Ag content, while the conductivity slightly decreased. Strain hardening through cold rolling was found to be effective in improving the hardness, especially in high-Ag alloys. Aging treatment was conducted either before the first cold rolling or between the first and the final cold rolling, and the conductivity was significantly higher at the former case, regardless of the Ag content. Softening of Cu-Mg-P alloy sheet was remarkable above $400^{\circ}C$ and the Ag content did not show any significant effect on it.

Effect of Sc Addition on Microstructure, Electrical Conductivity, Thermal Conductivity and Mechanical Properties of Al-2Zn-1Cu-0.3Mg Based Alloy (Al-2Zn-1Cu-0.3Mg합금의 Sc첨가에 따른 미세조직, 전기전도도, 열전도도 및 기계적 특성 변화)

  • Na, Sang-Su;Kim, Yong-Ho;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.542-549
    • /
    • 2020
  • Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 ㎛; however, this value drops to 914 and 529 ㎛ with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the as-extruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.

Effects of the Alloy Length on the Growth Behavior of Directionally Solidified Al-15Cu-lMg Alloy (Al-15Cu-1Mg합금의 일방향응고시 시편의 길이변화에 따른 응고거동변화)

  • Moon, Cheol-Hee
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.379-384
    • /
    • 1997
  • Al-15Cu-lMg alloys have been directionally solidified in 3mm diameter alumina tubes under the conditions of $760^{\circ}C$ of furnace temperature and 12 cm/hr of furnace moving velocity(V). By analyzing the evolution of the temperature profiles along the alloy length, the position of the solid/liquid interface, temperature gradient(G) and local growth velocity (R) were determined. These growth characteristics were compared for 6, 10, 14 cm length alloys. Steady state growth region was obtained in 15 cm length alloy, not in 6, 10 cm.

  • PDF

Effects of Mg and Cu Additions on Superplastic Behavior in MA Aluminum Alloys

  • Han, Chang-Suk;Jin, Sung-Yooun;Bang, Hyo-In
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.435-439
    • /
    • 2018
  • MA Al alloys are examined to determine the effects of alloying of Mg and Cu and rolling on tensile deformation behavior at 748 K over a wide strain rate range($10^{-4}-10^3/s$). A powder metallurgy aluminum alloy produced from mechanically alloyed pure Al powder exhibits only a small elongation-to-failure(${\varepsilon}_f$ < ~50%) in high temperature(748 K) tensile deformation at high strain rates(${\acute{\varepsilon}}=1-10^2/s$). ${\varepsilon}_f$ in MA Al-0.5~4.0Mg alloys increases slightly with Mg content(${\varepsilon}_f={\sim}140%$ at 4 mass%). Combined addition of Mg and Cu(MA Al-1.5%Mg-4.0%Cu) is very effective for the occurrence of superplasticity(${\varepsilon}_f$ > 500%). Warm-rolling(at 393-492 K) tends to raise ${\varepsilon}_f$. Lowering the rolling-temperature is effective for increasing the ductility. The effect is rather weak in MA pure Al and MA Al-Mg alloys, but much larger in the MA Al-1.5%Mg-4.0%Cu alloy. Additions of Mg and Cu and warm-rolling of the alloy cause a remarkable reduction in the logarithm of the peak flow stress at low strain rates (${\acute{\varepsilon}}$< ~1/s) and sharpening of microstructure and smoothening of grain boundaries. Additions of Mg and Cu make the strain rate sensitivity(the m value) larger at high strain rates, and the warm-rolling may make the grain boundary sliding easier with less cavitation. Grain boundary facets are observed on the fracture surface when ${\varepsilon}_f$ is large, indicating the operation of grain boundary sliding to a large extent during superplastic deformation.

Prediction of the Liquidus Temperature Curve for Hypoeutectic Al-Si-Cu-Mg Alloy (아공정 Al-Si-Cu-Mg 합금의 액상선 온도 곡선 예측)

  • Kim, Keunhak;Park, Dongsung;Oh, Seung-Jin;Jeon, Junhyub;Yoon, Sang-Il;Kim, Ki-Sun;Kim, Tae-Young;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.6
    • /
    • pp.300-306
    • /
    • 2018
  • In the present study we proposed new equations to predict the liquidus temperature curve for hypoeutectic Al-Si-Cu-Mg alloy. A thermodynamic simulation was carried out to calculate the liquidus temperature, eutectic temperature and eutectic Si concentration with different Si, Cu, and Mg contents in hypoeutectic Al-Si alloys. Regressed equations were derived using the thermodynamic simulation results by multiple regression analysis. The proposed equations were compared with the equations reported previously by other researchers and agreed better with the experimental data. The addition of Cu and Mg lowered the eutectic temperature. The eutectic Si concentration was decreased by adding Cu whereas that was increased by adding Mg. Al-Si binary phase diagram was successfully predicted with a consideration of the effect of Cu and Mg addition by using the proposed equations.