DOI QR코드

DOI QR Code

아공정 Al-Si-Cu-Mg 합금의 액상선 온도 곡선 예측

Prediction of the Liquidus Temperature Curve for Hypoeutectic Al-Si-Cu-Mg Alloy

  • 김근학 (전북대학교 신소재공학부) ;
  • 박동성 (전북대학교 신소재공학부) ;
  • 오승진 (전북대학교 신소재공학부) ;
  • 전준협 (전북대학교 신소재공학부) ;
  • 윤상일 ((주)삼기오토모티브 기술연구소) ;
  • 김기선 ((주)삼기오토모티브 기술연구소) ;
  • 김태영 ((주)삼기오토모티브 기술연구소) ;
  • 이석재 (전북대학교 신소재공학부)
  • Kim, Keunhak (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Park, Dongsung (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Oh, Seung-Jin (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Jeon, Junhyub (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Yoon, Sang-Il (Technical Research Center, Samkee Automotive) ;
  • Kim, Ki-Sun (Technical Research Center, Samkee Automotive) ;
  • Kim, Tae-Young (Technical Research Center, Samkee Automotive) ;
  • Lee, Seok-Jae (Division of Advanced Materials Engineering, Chonbuk National University)
  • 투고 : 2018.10.02
  • 심사 : 2018.11.06
  • 발행 : 2018.11.30

초록

In the present study we proposed new equations to predict the liquidus temperature curve for hypoeutectic Al-Si-Cu-Mg alloy. A thermodynamic simulation was carried out to calculate the liquidus temperature, eutectic temperature and eutectic Si concentration with different Si, Cu, and Mg contents in hypoeutectic Al-Si alloys. Regressed equations were derived using the thermodynamic simulation results by multiple regression analysis. The proposed equations were compared with the equations reported previously by other researchers and agreed better with the experimental data. The addition of Cu and Mg lowered the eutectic temperature. The eutectic Si concentration was decreased by adding Cu whereas that was increased by adding Mg. Al-Si binary phase diagram was successfully predicted with a consideration of the effect of Cu and Mg addition by using the proposed equations.

키워드

참고문헌

  1. I. B. Chyun, S. P. Hong and C. S. Kim : J. Korean Soc. Heat Treat., 27 (2014) 281. https://doi.org/10.12656/jksht.2014.27.6.281
  2. S. G. Park and C. S. Kim : J. Korean Soc. Heat Treat., 31 (2018) 97.
  3. S. J. Lee, S. K. Lee and N. I. Baik : J. Korean Soc. Heat Treat., 13 (2000) 108.
  4. M. Yildirim and D. Ozyurek : Mater. Design, 51 (2013) 767. https://doi.org/10.1016/j.matdes.2013.04.089
  5. G. Drossel : Giessereitechnik, 27 (1981) 7.
  6. R. Vijayaraghavan, N. Pelle, J. Boileau, J. Zindel and F. Bradley : Scr. Mater., 35 (1996) 861. https://doi.org/10.1016/1359-6462(96)00232-1
  7. F. C. Robles Hernandez, M. B. Djurdjevic, W. T. Kierkus and J. H. Sokolowski : Mater. Sci. Eng. A, 396 (2005) 271. https://doi.org/10.1016/j.msea.2005.01.024
  8. L. F. Mondolfo : Aluminum alloys, Structure and Properties, 1st ed, Butterworths, London, England (1976), 213.
  9. N. Tenekedjiev, H. Mulazimoglu, B. Closset and J. Gruzleski : Microstructures and Thermal Analysis of Strontium-Treated Aluminium-Silicon Alloys, American Foundryman's Society, Inc. Des Plaines, Illinois, USA (1995) 1.
  10. MatCalc software. Available online: http://www.matcalc.at.
  11. A. R. E. Singer and S. A. Cottrell : J. Inst. Metals, 73 (1947) 33.
  12. L. Backerud, G. Chai and J. Tamminen : Solidification Characteristics of Aluminum Alloys, vol. 2, Foundry Alloys, American Foundrymen's Society. Inc., Oslo, Norway (1990) 266.
  13. S. C. Jeng and S. W. Chen : Mater. Sci. Forum, 217-222 (1996) 283. https://doi.org/10.4028/www.scientific.net/MSF.217-222.283
  14. K. Kobayashi, P. H. Shingu and R. Ozaki : Scr. Metall., 10 (1976) 525. https://doi.org/10.1016/0036-9748(76)90252-0
  15. B. P. Winter, T. R. Ostram, T. A. Sleder, P. K. Trojan and R. D. Pehlke : AFS Transactions, 87 (1993) 259.
  16. J. Morice: Proceedings from the Conference on Thermal Analysis of Molten Aluminum, Rosemont, Illinois, (1984) 37.
  17. J. Carbonier and C. Rechiney : Proceedings from the Conference on Thermal Analysis of Molten Aluminum, Rosemont, Illinois, (1984) 121.
  18. A. Kearney: Proceedings from the Conference on Thermal Analysis of Molten Aluminum, Rosemont, Illinois (1984) 169
  19. M. B. Djurdjevic, S. Manasijevic, Z. Odanovic and R. Radisa: Int. J. Mater. Res., 104 (2013) 865. https://doi.org/10.3139/146.110940
  20. M. B. Djurdjevic and I. Vicario : Revista de Metalurgia, 49 (2013) 340. https://doi.org/10.3989/revmetalm.1238
  21. M. B. Djurdjevic, W. T. Kierkus, G. E. Byczynski and J.H. Sokolowski: AFS Transactions, 47 (1998) 143.
  22. A. N. Lakshmanan, S. G. Shabestari and J. E. Gruzelski : Z. Metall., 86 (1995) 457.
  23. H. Kim, J. Inoue, M. Okada and K. Nagata : ISIJ Int., 57 (2017) 2229. https://doi.org/10.2355/isijinternational.ISIJINT-2017-212
  24. R. Maniara, L. A. Dobrzanski, M. Krupinski and J. H. Sokolowski : Arch. Foundry Eng., 7 (2007) 119.
  25. I. Aguilera-Luna, M. J. Castro-Roman, J. C. Escobedo-Bocardo, F. A. Garcia-Pastor and M. Herrera-Trejo: Mater. Charac., 95 (2014) 211. https://doi.org/10.1016/j.matchar.2014.06.009