• Title/Summary/Keyword: Mg electrode

Search Result 350, Processing Time 0.021 seconds

Comparison of Dye Removal Performance of Direct and Indirect Oxidation Electrode (직접 산화와 간접 산화용 전극의 Dye 제거 성능 비교)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.963-968
    • /
    • 2010
  • This study has carried out to evaluate the performance of direct and indirect oxidation electrode for the purpose of decolorization of Rhodamine B (RhB) in water. Four kinds of electrodes were used for comparison: Pt and JP202 (indirect oxidation electrode), Pb and boron doping diamond (BDD, direct oxidation electrode). The effect of applied current (0.5 ~ 2.5 A), electrolyte type (NaCl, KCl, HCl, $Na_2SO_4$ and $H_2SO_4$) and electrolyte concentration (0.5 ~ 2.5 g/L), solution pH (3 ~ 11) and initial RhB concentration (25 ~ 125 mg/L) were evaluated. Experimental results showed that RhB removal efficiency were increased with increase of current, NaCl dosage and decrease of the pH. However, the effect of operating parameter on the RhB removal were different with the electrode type. JP202 electrode was the best electrode from the point of view of performance and energy consumption. The order of removed RhB concentration per energy lie in: JP202>Pt>Pb>BDD.

Electrochemical Properties of Ti/IrO2/SnO2-Sb-Ni Electrode for Water Treatment (수처리용 Ti/IrO2/SnO2-Sb-Ni 전극의 전기화학적 특성평가)

  • Yang, So Young
    • Journal of Environmental Science International
    • /
    • v.29 no.10
    • /
    • pp.943-949
    • /
    • 2020
  • In this work, we prepared a heterojunction anode with a surface layer of SnO2-Sb-Ni (SSN) on a Ti/IrO2 electrode by thermal decomposition to improve the electrochemical activity of the Ti/IrO2 electrode. The Ti/IrO2-SSN electrode showed significantly improved electrochemical activity compared with Ti/IrO2. For the 0.1 M NaCl and 0.1 M Na2SO4 electrolytes, the onset potential of the Ti/IrO2-SSN electrode shifted in the positive direction by 0.1 VSCE and 0.4 VSCE, respectively. In 2.0-2.5 V voltages, the concentration in Ti/IrO2-SSN was 2.59-214.6 mg/L Cl2, and Ti/IrO2 was 0.55-49.21 mg/L Cl2. Moreover, the generation of the reactive chlorine species and degradation of Eosin-Y increased by 3.79-7.60 times and 1.06-2.15 times compared with that of Ti/IrO2. Among these voltages, the generation of the reactive chlorine species and degradation of Eosin-Y were the most improved at 2.25 V. Accordingly, in the Ti/IrO2-SSN electrode, it can be assumed that the competitive reaction between chlorine ion oxidation and water oxidation is minimized at an applied voltage of 2.25V.

A Study of Power Output Characteristics for the Magnesium Metal Fuel Cell (마그네슘 금속연료전지의 출력특성에 관한 연구)

  • Kim, Yong-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.212-217
    • /
    • 2014
  • The electric power output characteristics of magnesium fuel cell were investigated with regard to internal resistance. A equivalent circuit with the series-connected three internal resistance was introduced to analyze of the response to change of power. The power output analysis was employed in order to investigate the effect of internal resistances for the electrolyte concentration, air electrode area, Mg electrode area and distance between the electrodes. It was confirmed that internal resistance is generated by the electrolyte, air electrode and metal electrode, then those Internal resistances had a significant effect on the power output decrease. The power output was a maximum when the load resistance maches the internal resistance of the magnesium fuel cell. The fuel efficiency was only 50% at maximum power output. Higher fuel efficiency was achieved when the load resistance is greater than the internal resistance.

Process and Characteristics of High Power Catalyst Electrode for PEM Fuel Cell

  • Chang H.;Lim C.;Kim J.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.171-175
    • /
    • 1999
  • Novel process for high power catalyst electrode for PEM fuel cell has been developed. MEA having this catalyst electrode showed $0.5W/cm^2\;with\;0.2mg/cm^2$ of Pt loading at aunospheric humid hydrogen and oxygen condition. In this process, platinized carbon and plain carbon powders were coated with ionomer (Nafion) and hydrophobic polymer (PTFE), respectively and it could maximize two roles of catalyst electrode, l.e., reaction and gas supplying component. Those polarization characteristics proved the improved performance by reducing potential drop especially in the concentration polarization region.

Potentiometric performances of polymer membrane electrode based on cyclosporin (싸이크로스포린을 이용한 고분자막 전위차 전극)

  • Rhee Paeng, Insook
    • Analytical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.491-494
    • /
    • 2005
  • The main component governing selectivity in ion-selective electrodes and optodes is the ionophore. For this reason, a member of natural products that possess selective ion-binding properties have long been sought after. By applying this principle, the performance of cyclosporin used as neutral carriers for calcium selective polymeric membrane electrode was investigated. The calcium ion-selective electrode based on cyclosporin gave a good Nernstian response of 26.6 mV per decade for calcium ion in the activity range $1{\times}10^{-6}M$ to $1{\times}10^{-2}M$. The optimized calcium ion-selective electrode displayed very comparable selectivity for $Ca^{2+}$ ion against alkali and alkaline earth metal ions, $Na^{2+}$, and $Mg^{2+}$ in particular.

The Effect of Mechanical Grinding or Electrochemical Properties of $CaNi_5$ Hydrogen Storage Alloy ($CaNi_5$ 수소저장합금의 전기화학 특성에 미치는 MG 처리 효과)

  • Lee C. R.;Kang S. G.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.106-111
    • /
    • 1999
  • The effect of the MG on the electrochemical charge-discharge properties of $CaNi_5$ hydrogen storage alloys was investigated under Ar and $H_2$ atmosphere. $CaNi_5$ alloy was partially decomposed to CaO and Ni phase during the MG process. The decomposition of $CaNi_5$ alloy was enhanced by the MG process which leads to crash and reformation of oxide layer on the alloy surface. As the MG process time increased, initial discharge capacity of the electrode was reduced, but the decay rate of the capacity compared to $CaNi_5$ alloys was slower. It may be described that the degradation of $MG-CaNi_5$ electrode was caused by the reduction of the reversible hydrogen reaction sites and increasing polarization resistance of hydrogen adsorption resulted from phase decomposition and disorder during the MG process, and/or by hydroxide formation during the electrochemical charge-discharge cycles.

Resistance Spot Welding Characteristics of Mg Alloy Applying Current Waveform Control (전류 파형 제어를 적용한 마그네슘 합금의 저항 점 용접 특성)

  • Choi, Dong-Soon;Hwang, In-Sung;Kim, Dong-Cheol;Ryu, Jae-Wook;Kang, Moon-Jin
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.70-75
    • /
    • 2014
  • In automotive industry, applying of Mg alloy to autobody has been issued recently as a light metal. But poor resistance spot weldability of Mg alloy is blocking commercialization. So studies on improving resistance spot weldability of Mg alloy is increasing continuously. For reduce loss of heat input during welding, inverter DC power source is considered because of short rise time to target welding current. But rapid rising of welding current can increase temperature rapidly in nugget and oxide film between electrode and base metal, and that causes generating expulsion on low welding current range. In this study, for increase optimum welding current range and prevent generating expulsion, applicate various types of welding current waveform controls during resistance spot welding. For analysis effects of each current waveform control, acceptable welding current regions according to electrode force and welding time is determined and lobe diagram is derived. In result, pre heat is proposed as optimum type of welding current waveform control.

Effect of Nickel addition in DC arc test of Cu-W electrode (Cu-W 전극의 DC Arc 시험에 있어서 Nickel 첨가 영향)

  • Kim, Bong-Seo;Chung, Hyeon-Wook;Lee, Hee-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.11-14
    • /
    • 2003
  • Sintered Cu-W has been used for the electrode of GIS for interrupting the abnormal current. In this study the effect of Ni addition in Cu-W electrode was investigated. Cu-W electrodes used contains 0.1~0.2wt% Ni and were conducted the experiments which was attacked by DC arc test (70V-70A) for 300 times periodically. As the contents of Ni in Cu-W electrode increase, the hardness and electrical conductivity were decreased. The weight change ($\Delta$mg) of electrode after DC arc test increased with increasing Ni contents and test times. The hardness and electrical conductivity of electrode after DC arc test were decreased compared with non-arc affected electrode, which was owing to the defects near surface of electrode and degradation by arc heat. It was considered that Cu in the Cu-W electrode was scattered to all directions by arc heat, therefore, the electrodes were damaged and deformed in the surface and cross-section of electrode. It is difficult to estimate directly the characteristics of Cu-W electrode for GIS related with high voltage and current from the results of DC arc test conducted in this study. However, the results of the effect of Ni addition in Cu-W electrode could be applied for the research of electrode for GIS.

  • PDF

A Facile Electrochemical Fabrication of Reduced Graphene Oxide-Modified Glassy Carbon Electrode for Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid

  • Yu, Joonhee;Kim, Tae Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.274-281
    • /
    • 2017
  • This paper describes the simple fabrication of an electrode modified with electrochemically reduced graphene oxide (ERGO) for the simultaneous electrocatalytic detection of dopamine (DA), ascorbic acid (AA), and uric acid (UA). ERGO was formed on a glassy carbon (GC) electrode by the reduction of graphene oxide (GO) using linear sweep voltammetry. The ERGO/GC electrode was formed by subjecting a GO solution ($1mg\;mL^{-1}$ in 0.25 M NaCl) to a linear scan from 0 V to -1.4 V at a scan rate of $20mVs^{-1}$. The ERGO/GC electrode was characterized by Raman spectroscopy, Fourier transform infrared spectroscopy, contact angle measurements, electrochemical impedance spectroscopy, and cyclic voltammetry. The electrochemical performance of the ERGO/GC electrode with respect to the detection of DA, AA, and UA in 0.1 M PBS (pH 7.4) was investigated by differential pulse voltammetry (DPV) and amperometry. The ERGO/GC electrode exhibited three well-separated voltammetric peaks and increased oxidation currents during the DPV measurements, thus allowing for the simultaneous and individual detection of DA, AA, and UA. The detection limits for DA, AA, and UA were found to be 0.46, 77, and $0.31{\mu}M$ respectively, using the amperometric i-t curve technique, with the S/N ratio being 3.

Study on the Anode Electrode Reaction in the Metal-Air Cell (금속-공기전지의 Anode전극 반응에 관한 연구)

  • Kim, Yong-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.1002-1006
    • /
    • 2010
  • In this study, magnesium (Mg), zinc (Zn) and aluminium (Al) as anode electrode and the solution of NaCl dissolved with 2~20 wt% as electrolytes were used for the metal-air cell. The open circuit voltage, short circuit current and I-V characteristics upon different kinds of anode electrode and electrolyte concentration were investigated. The open circuit voltage, initially about 1.45 V, rises to 1.6 V during the first 10 minutes indicating the necessity of an induction time to activate the catalyst on the air cathode. The short circuit current increases with an increased concentration of NaCl, causes an increase in the conductivity of the electrolyte solution, but the open circuit voltage did not under undergo influence of electrolyte. From NaCl 20 wt% electrolyte, the maximum output power of the magnesium electrode materials was measured with 177mW. It is found that the power characteristics of metal-air cell could be improved by using magnesium electrode materials in the NaCl electrolyte.