• Title/Summary/Keyword: Methyltransferase

Search Result 301, Processing Time 0.026 seconds

Follistatins have potential functional role in Porcine Embryogenesis

  • Kim, Dong-Hee;Chun, Ju Lan;Lee, Ji Hye;Kim, Keun Jung;Kim, Eun Young;Lee, Bo Myeong;Zhuang, Lili;Kim, Min Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.52-60
    • /
    • 2016
  • In animal reproduction, the quality of oocytes and embryos has been evaluated by the expression of specific molecules. Follistatin (FST), which was isolated from follicular fluid, binds and bio-neutralizes the TGF-${\beta}$ superfamily members. Previous studies using the bovine model showed FST could be an important molecular determinant of embryo developmental competence. However, the effect of FST treatment on porcine embryo developmental competence has not been established. In this study, the effect of exogenous FST on porcine embryo developmental competence was investigated during in vitro culture. FST (10 ng/ml) treatment induced a significant decrease in the rate of cell arrest at the 4-cell stage. The expression levels of DNA-methyltransferase 1 (DNMT1), histone deacetylase 1 (HDAC1), and histone deacetylase 2 (HDAC2) were decreased in 4-cell stage embryos. FST treatment also resulted in significant improvements in developmental competence of embryos in terms of blastocyst formation rate and OCT-4 mRNA levels, the latter being related to pluripotency. In conclusion, during in vitro culture, FST treatment significantly ameliorated 4-cell block during embryonic development and improved embryo developmental competence. Therefore, FST treatment may potentially have a functional role in porcine embryogenesis that is broadly applicable to enhance in vitro embryo development.

Transgenic tobacco with γ-TMT of perilla showed increased salt resistance and altered pigment synthesis (들깨 γ-TMT 형질전환 담배의 색소성분 변화 및 염 스트레스 내성 증가)

  • Woo, Hee-Jong;Sung, Jwa-Kyung;Kim, Jung-Bong;Kim, Na-Young;Lee, Si-Myung;Shin, Kong-Sik;Lim, Sun-Hyung;Suh, Seok-Cheol;Kim, Kyung-Hwan;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.329-335
    • /
    • 2008
  • Tocopherols are essential lipophilic antioxidant in human cells, while little is known about its function in plant tissues. To study the impact of composition and content of tocopherols on stress tolerance, tobacco (Nicotiana tabacum) was transformed with a construct containing a cDNA insert encoding $\gamma$-tocopherol methyltransferase ($\gamma$-TMT/VTE4) from perilla under the control of the cauliflower mosaic virus (CaMV) 35S promoter. The transgenic tobacco was confirmed by PCR and RT-PCR. The total content and composition of tocopherols in the transgenic lines were similar with wild type controls. However, chlorophyll-a and carotenoid content in the transgenic lines were increased by up to 45% (P<0.01) and 39% (P<0.02), respectively. Also, the over-expression of $\gamma$-TMT increased the salt stress tolerance in tobacco plants. These results demonstrate that over-expression of $\gamma$-TMT gene in tocopherol bio-synthetic pathway can increase salt stress tolerance and contents of chlorophyll-a and carotenoid in transgenic tobacco plants.

Association of the COMT Gene Polymorphism with the Risk of Endometriosis in Korean Women (한국여성에서 자궁내막증의 발생위험도와 Catechol-O-Methyltransferase 유전자 다형성과의 관련성에 관한 연구)

  • Lee, Sa-Ra;Lee, So-Hyun;Lee, Woon-Jeong;Hur, Sung-Eun;Lee, Ji-Young;Moon, Hye-Sung;Chung, Hye-Won
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.1
    • /
    • pp.51-57
    • /
    • 2004
  • Objective: To investigate whether polymorphism of gene encoding COMT is associated with the risk of endometriosis in Korean women. Methods: We investigated 136 patients with histopathologically confirmed endometriosis rAFS stage III/IV and 251 control group women who were surgically proven to have no endometriosis. Polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) of PCR products were done to determine each participant's COMT genotype. Results: The distribution according to NIaIII genetic polymorphisms of COMT were as follows. $COMT^{HH}$, $COMT^{HL}$, and $COMT^{LL}$ genotypes were 56.6% (77 women), 34.6% (47 women) and 8.8% (12 women) in the study group and 50.6% (127 women), 39.4% (99 women) and 10.0% (25 women) in the control group. There was no significant difference between the study group and the control group. Conclusion: The results suggest that COMT genetic polymorphism may not be associated with the development of endometriosis in Korean women.

Expression of DNA Methyltransferase Transcripts in The Oocytes and Preimplantation Embryos in Mouse (생쥐 난자와 착상전 초기배아에서 DNA 메틸전이효소 전사물의 발현)

  • 김종월;이양한;강승호;한성원;전일경;김성례;김문규
    • Development and Reproduction
    • /
    • v.2 no.2
    • /
    • pp.197-203
    • /
    • 1998
  • DNA methylation seems to play an important regulatory role in gene expression and cell differentiation during postimplantation embryonic development. However, the significance of DNA methylation which is maintained by the DNA MTase during preimplantation embryonic development, is not fully understood. In order to study the role of DNA methylation in the preimplantation embryos, the expression of DNA MTase transcripts was monitored in the oocytes and preimplantation embryos. The mRNA of DNA MTase was detected in the oocytes and pleimplantation embryos. The relative mRNA levels of DNA MTase were high from the stages of GV-oocytes and pronuclear embryos, and thereafter decreased gradually. By the treatment of $\alpha$-amanitin, it was confirmed that the transcripts presented in pronuclear embryos was derived from the maternal genome. The presence of transcripts of DNA MTase in the oocytes and pronuclear embryos suggests that the maintenance of DNA methylation may be necessary and seems to play an important role in gene expression and cell differentiation during preimplantation embryonic develop-ment in mouse.

  • PDF

Rat Liver 10-formyltetrahydrofolate Dehydrogenase, Carbamoyl Phosphate Synthetase 1 and Betaine Homocysteine S-methytransferase were Co-purified on Kunitz-type Soybean Trypsin Inhibitor-coupled Sepharose CL-4B

  • Kim, Hyun-Sic;Kim, Ji-Man;Roh, Kyung-Baeg;Lee, Hyeon-Hwa;Kim, Su-Jin;Shin, Young-Hee;Lee, Bok-Luel
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.604-609
    • /
    • 2007
  • An Asp/His catalytic site of 10-formyltetrahydrofolate dehydrogenase (FDH) was suggested to have a similar catalytic topology with the Asp/His catalytic site of serine proteases. Many studies supported the hypothesis that serine protease inhibitors can bind and modulate the activity of serine proteases by binding to the catalytic site of serine proteases. To explore the possibility that soybean trypsin inhibitor (SBTI) can recognize catalytic sites of FDH and can make a stable complex, we carried out an SBTI-affinity column by using rat liver homogenate. Surprisingly, the Rat FDH molecule with two typical liver proteins, carbamoyl-phosphate synthetase 1 (CPS1) and betaine homocysteine S-methyltransferase (BHMT) were co-purified to homogeneity on SBTI-coupled Sepharose and Sephacryl S-200 followed by Superdex 200 FPLC columns. These three liver-specific proteins make a protein complex with 300 kDa molecular mass on the gel-filtration column chromatography in vitro. Immuno-precipitation experiments by using anti-FDH and anti-SBTI antibodies also supported the fact that FDH binds to SBTI in vitro and in vivo. These results demonstrate that the catalytic site of rat FDH has a similar structure with those of serine proteases. Also, the SBTI-affinity column will be useful for the purification of rat liver proteins such as FDH, CPS1 and BHMT.

DNA methyltransferase 3a is Correlated with Transgene Expression in Transgenic Quails

  • Jang, Hyun-Jun;Kim, Young-Min;Rengaraj, Deivendran;Shin, Young-Soo;Han, Jae-Yong
    • Journal of Animal Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.269-274
    • /
    • 2011
  • DNA methyltransferases (DNMTs) are closely associated with the epigenetic change and the gene silencing through the regulation of methylation status in animal genome. But, the role of DNMTs in transgene silencing has remained unclear. So, we examined whether the knockdown of DNMT influences the reactivation of transgene expression in the transgenic quails. In this study, we investigated the expression of DNMT3a, and DNMT3b in blastoderm, quail embryonic fibroblasts (QEFs) and limited embryonic tissues such as gonad, kidney, heart and liver of E6 transgenic quails (TQ2) by RT-PCR. We further analyzed the expression of DNMT3a at different stages of whole embryos during early embryonic development by qRT-PCR. DNMT3a expression was detected in all test samples; however, it showed the highest expression in E6 whole embryo. Embryonic fibroblasts collected from TQ2 quails were treated with two DNMT3a-targeted siRNAs (siDNMT3a-51 and siDNMT3a-88) for RNA interference assay, and changes in expression were then analyzed by qRT-PCR. The siDNMT3a-51 and siDNMT3a-88 reduced 53.34% and 64.64% of DNMT3a expression in TQ2 QEFs, respectively. Subsequently the treatment of each siRNA reactivated enhanced green fluorescent protein (EGFP) expression in TQ2 (224% and 114%). Our results might provide a clue for understanding the DNA methylation mechanism responsible for transgenic animal production and stable transgene expression.

Combinatorial Antitumor Activity of Oxaliplatin with Epigenetic Modifying Agents, 5-Aza-CdR and FK228, in Human Gastric Cancer Cells

  • Park, Jong Kook;Seo, Jung Seon;Lee, Suk Kyeong;Chan, Kenneth K;Kuh, Hyo-Jeong
    • Biomolecules & Therapeutics
    • /
    • v.26 no.6
    • /
    • pp.591-598
    • /
    • 2018
  • Epigenetic silencing is considered to be a major mechanism for loss of activity in tumor suppressors. Reversal of epigenetic silencing by using inhibitors of DNA methyltransferase (DNMT) or histone deacetylases (HDACs) such as 5-Aza-CdR and FK228 has shown to enhance cytotoxic activities of several anticancer agents. This study aims to assess the combinatorial effects of genesilencing reversal agents (5-Aza-CdR and FK228) and oxaliplatin in gastric cancer cells, i.e., Epstein-Barr virus (EBV)-negative SNU-638 and EBV-positive SNU-719 cells. The doublet combinatorial treatment of 5-Aza-CdR and FK228 exhibited synergistic effects in both cell lines, and this was further corroborated by Zta expression induction in SNU-719 cells. Three drug combinations as 5-Aza-CdR/FK228 followed by oxaliplatin, however, resulted in antagonistic effects in both cell lines. Simultaneous treatment with FK228 and oxaliplatin induced synergistic and additive effects in SNU-638 and SNU-719 cells, respectively. Three drug combinations as 5-Aza-CdR prior to FK228/oxaliplatin, however, again resulted in antagonistic effects in both cell lines. This work demonstrated that efficacy of doublet synergistic combination using DNMT or HDACs inhibitors can be compromised by adding the third drug in pre- or post-treatment approach in gastric cancer cells. This implies that the development of clinical trial protocols for triplet combinations using gene-silencing reversal agents should be carefully evaluated in light of their potential antagonistic effects.

In vitro Translation and Methylation of Iso-1-Cytochrome C from Saccharomyces Cerevisiae

  • Paik, Woon-Ki;Park, Kwang-Sook;Tuck, Martin;Kim, Sang-Duk
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.505.1-505
    • /
    • 1986
  • The gene for iso-1-cytochrome c for Saccharomyces cerevisiae was recloned into a pSP65 vector containing an active bacteriophage SP6 promoter. The iso-1-cytochrome c gene was cloned as an 856 bp Xho 1-Hind III fragment. When the resulting plasmid was digested at the Hind 111 site 279 bases downstream from the termination codon of the gene and transcribed in vitro using SP6 RNA polymerase, full length transcripts were produced. The SP6 iso-1-cytochrome c mRNA was translated using a rabbit reticulocyte lysate system and the protein products analyzed on SDS polyacrylamide gels. One major band was detected by autofluorography. This band was found to have a molecular weight of 12,000 Da and coincided with the Coomassie staining band of apocytochrome c from S. cerebisiae. The product was also shown to be identical with that of standard yeast apocytochrome c on an isoelectric focusing gel. The in vitro synthesized iso-a-cytochrome c was methylated by adding partially purified S-adenosyl-L-methionine . protein-lysine N-methyltransferase (Protein methylase III; EC 2.1.1.43) from S. cerevisiae along with S-adenosyl-L-methionine to the in vitro translation mixtures. The methylation was shown to be inhibited by the addition of the methylase inhibitor S-adenosyl-L-homocysteine or the protein synthesis inhibitor pu omycin. The methyl derivatives in the protein were identified as $\varepsilon$-N-mono, di and trimethyllysine by amino acid analysis. The molar ratio of methyl groups incorporated to that of cytochrome c molecules synthesized showed that 23% of the translated cytochrome c molecules were methylated by protein methylase III.

  • PDF

Improvement of Transformation Efficiency Through In Vitro Methylation and SacII Site Mutation of Plasmid Vector in Bifidobacterium longum MG1

  • Kim, Jin-Yong;Wang, Yan;Park, Myeong-Soo;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.6
    • /
    • pp.1022-1026
    • /
    • 2010
  • The different cleavage patterns of pYBamy59 plasmid isolated from E. coli $DH5{\alpha}$ and B. longum MG1 by the cell extract of B. longum MG1 suggested that the main reason for its low transformation efficiency was related to the restriction modification (R-M) system. To confirm the correlation between the R-M system and transformation efficiency, in vitro methylation and site-directed mutagenesis were performed in pYBamy59. Sequence analysis of pYBamy59 fragments digested by the cell extract of B. longum MG1 revealed that all fragments were generated by restriction of the sequence recognized by SacII endonuclease. When pYBamy59 from E. coli was methylated in vitro by CpG or GpC methyltransferase, it was protected from SacII digestion. Site-directed mutagenesis, which removed SacII sites from pYBamy59, or in vitro methylation of pYBamy59 showed 8- to 15-fold increases in the transformation efficiency over intact pYBamy59. Modification of the SacII-related R-M system in B. longum MG1 and in vitro methylation in pYBamy 59 can improve the transformation efficiency in this strain. The results showed that the R-M system is a factor to limit introduction of exogenous DNA, and in vitro modification is a convenient method to overcome the barrier of the R-M system for transformation.

Suppression of DNMTs Accelerates the In Vitro Erythropoietic Differentiation of Human $CD34^+$ Progenitor Cells

  • Kim, Seok-Ho;Yang, Hee-Young;Jeong, Dong-Kee;Lee, Sang-Ryeul;Ryoo, Zae-Young;Lee, Tae-Hoon
    • Reproductive and Developmental Biology
    • /
    • v.31 no.4
    • /
    • pp.241-248
    • /
    • 2007
  • Epigenetic modification dependent DNA methyltransferases (DNMTs) play an important role in tissue- and stage-specific gene regulation and normal mammalian development. In this study, we show that DNMTs are expressed at different levels during hematopoietic stem cell (HSC) differentiation to proerythrocytes. DNMT1, DNMT3A, and DNMT3B were highly expressed at day 7 after differentiation. We used specific siRNA as a tool to probe the relationship between the expression of DNMTs and erythropoietic differentiation. When introduced siRNA of DMNT1 and DMNT3b in human $CD34^+$ cells, these more differentiated into erythrocytes. This was confirmed by glycophorin A (GPA) positive cell analysis and globin gene expression. $GPA^+$ cells increased up to $20{\sim}30%$, and ${\gamma}$- and ${\epsilon}$-globin genes increased in siRNA transfected cells. Therefore, our data suggest that suppression of DNA methylation can affect positively differentiation of HSC and may contribute to expression of erythrocyte lineage genes including GPA and globins.