• Title/Summary/Keyword: Methyl Mercaptan

Search Result 102, Processing Time 0.026 seconds

Suspension Polymerization and Characterization of Transparent Poly(methyl methacrylate-co-isobornyl methacrylate)

  • Park, Sung-Il;Lee, Sang-In;Hong, Soon-Jik;Cho, Kuk-Young
    • Macromolecular Research
    • /
    • v.15 no.5
    • /
    • pp.418-423
    • /
    • 2007
  • A methacrylate copolymer based on isobornyl methacrylate (IBMA) and methyl methacrylate (MMA) was synthesized in an aqueous suspension via free-radical polymerization. The potential of this copolymer as a heat-resistant optical polymer is also discussed. 1,1,3,3-tetramethylbutyl peroxy-2-ethyl hexanoate and n-octyl mercaptan were used as the initiator and chain transfer agents, respectively. The effect of IBMA on the properties of the copolymer was investigated. The composition of the copolymer was analyzed using $^1H-NMR$, and the heat resistance by measuring the glass transition temperature, which exhibited a linear dependency on the IBMA content in the copolymer. Variation of the chain transfer content used in the synthesis step was effective for the optimization of the copolymer for practical use.

Emission Characteristics of Odor Compounds from Pneumatic Waste Collection Plants (생활폐기물 자동집하시설의 악취물질 배출특성)

  • Yoon, Yongkyeong;Kim, Daekeun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.8
    • /
    • pp.541-548
    • /
    • 2012
  • The objective of this study was to investigate emission characteristics of odorous compounds from the pneumatic waste collection plants (namely, A and B sites). The air samples were collected from each site, at a carrier gas inside the plant and an exhaust gas, to analyze complex odor and 22 odorous compounds. Ammonia, sulfur compounds, and acetaldehyde were the critical odorous components generated in the plants studied. Characteristics of odor at exhaust outlet varied according to the type of odor control engineering. In the analysis of the odor contribution degree of odor components based on odor threshold, site A shows that the odor contribution of dimethyl sulfide was found to be 26%, acetaldehyde 18%, and methyl mercaptan 14%. For site B, methyl mercaptan was 56% and both hydrogen sulfide and dimethyl sulfide were 15%.

The Effects of Tongue Coating on Volatile Sulfur Compounds Production in the Oral Malodor Patients (구취 환자에서 설태가 휘발성 황화합물의 생성에 미치는 영향에 관한 연구)

  • Lee, Hun;Lee, Seung-Ryeul;Kim, Young-Ku
    • Journal of Oral Medicine and Pain
    • /
    • v.26 no.3
    • /
    • pp.243-252
    • /
    • 2001
  • 본 연구에서는 구강 내 공기 중 설태 제거 전후의 휘발성 황화합물 농도를 gas chromatography를 이용하여 비교 분석하였다. 피검자로는 서울대학교 치과병원 구취클리닉에 내원한 환자 중에서 치주 건강 상태가 양호하며 구취를 호소하는 환자 18 명(평균연령 31.4세; 남자 8명, 여자 10명)을 대상으로 하였으며 구취를 측정하기 전에 모든 피검자들은 실험 전날 취침 전부터 실험 당일 실험시작 전까지 음식 섭취나 양치질 등의 모든 구강 활동을 금지하였다. 구취 시료는 채취 전에 피검자로 하여금 3분간 입을 다물게 한 후 입을 약 2cm정도 벌린 상태에서 시행하였으며 시료 채취 후 설태를 제거하였다. 설태 제거 후에 구강 내 공기를 다시 채취한 후 gas chromatography를 통하여 휘발성 황화합물의 각 성분별 농도를 분석하였다. 분석과정에서는 과거에 휘발성 황화합물의 검출 시 사용되어진 sampling loop와 isothermal run condition 대신 좀더 효율적인 직접표본주입방법과 oven temperature programmed analysis를 시행하였다. 1. 전체 휘발성 황화합물은 Hydrogen sulfide (59.96%), Methyl mercaptan (25.08%), Dimethyl sulfide (14.96%)로 구성되었다. 이 중 Hydrogen sulfide는 전체 휘발성 황화합물중 약 60%를 차지하여 치주상태가 양호한 구취환자에서의 주요한 구취 구 성 성분이었다. 2. 설태 제거 후 전체 휘발성 황화합물의 농도감소는 제거 전에 비하여 41.71%로 유의 하게 감소하였다(p<0.01). 3. 설태 제거 후에 Hydrogen sulfide의 농도감소는 43.62% (p<0.01), Methyl mercaptan 의 농도감소는 38.88% (p<0.05), 그리고 Dimethyl sulfide의 농도감소는 30.21% (p<0.01)로 각각 유의하게 감소하였다. 4. 전체 휘발성 황화합물의 구성비율은 설태 제거 전후에 유의한 차이가 없었다 (p>0.05).

  • PDF

The Analysis of Sulfur Compounds of Odorous Material in Kunsan Industrial Complex

  • Kim, Seong-Cheon;Kim, Ki-Hyun;Choi, Yeo-Jin
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.399-405
    • /
    • 2005
  • In this study, we investigated the gas chromatography (GC) and pulsed flame photometric detection (PFPD) system for the analysis of four major reduced S compounds including hydrogen sulfide ($H_2S)$; methyl mercaptan ($CH_3SH$); dimethyl sulfide (DMS); and dimethyl disulfide(DMDS) contained in environmental samples. To analyze these compounds in high concentration range (above ppb level), we developed a high mode analytical setting with the loop-injection system. By contrast, we also established a low mode setting for the analysis of low concentration samples (ppt-level samples from ambient air) by the combination with thermal desorption unit(TDU). Comparative analysis of both settings revealed that relative detection properties of four S compounds are systematic enough. The results of high mode analysis indicated that the patterns were systematic among compounds: H2S exhibited the lowest sensitivity, while DMBS showed the strongest one. The results were also compared in terms of sensitivity reductions for all compounds by dividing slope ratios between low and high mode system. Although low mode system exhibited significant reductions on the order of a few tens times, their detection characteristics were highly consistent as it was shown in the high mode setting. To learn more about absolute and relative relations between two different modes of S analysis, future studies may have to be directed to cover more complicated nature of GC/PFPD performance. Hydrogen sulfide($H_2S$) was over in summer about low level of olfactory sense 410 ppt, Methyl mercaptan(C$H_3SH$) was over in apring and summer about low level of olfactory sense 70, Dimethyl sulfide(DMS) was not over in four season about low level of olfactory sense 2,200 ppt. Carbon disulfide($CS_2$) was not over in four deason about Tow level of olfactory sense 210,000, Dimethyl disulfide(DMDS) was not over in summer about low level of olfactory sense2,000.

  • PDF

Weissella cibaria CMU suppresses mgl gene expression and enzyme activity associated with bad breath

  • Kim, Hyun-Jin;Yeu, Ji-Eun;Lee, Dong-Suk;Kang, Mi-Sun
    • International Journal of Oral Biology
    • /
    • v.44 no.4
    • /
    • pp.152-159
    • /
    • 2019
  • The oral care probiotic strain Weissella cibaria CMU (oraCMU) inhibits volatile sulphur compounds associated with halitosis, presumably by inhibiting the growth of associated oral pathogens. In the present study, we investigated whether oraCMU inhibits the production of these compounds by suppressing the expression of mgl. This gene encodes L-methionine-α-deamino-γ-mercaptomethane-lyase (METase) and is involved in the production of methyl mercaptan (CH3SH) by Porphyromonas gingivalis. Therefore, we specifically investigated the effects of oraCMU on the growth, CH3SH production, METase activity, and mgl expression of P. gingivalis. The minimum inhibitory concentrations of cell-free supernatant and secreted proteins from oraCMU were 125 mg/mL and 800 ㎍/mL, respectively. At sub-minimum inhibitory concentration levels, these metabolites inhibited CH3SH production, but they also reduced P. gingivalis viability. Only heat-killed oraCMU decreased CH3SH production without affecting P. gingivalis viability. Heat-killed oraCMU also inhibited METase activity toward L-methionine and mgl mRNA expression (p < 0.05). In summary, we demonstrated the inhibition of volatile sulphur compounds via the antimicrobial action of oraCMU and, for the first time, the inhibition of such compounds by heat-killed oraCMU, which occurred at the molecular level.

Analysis of Volatile Organic Compounds by GC/MS with the Thermal Desorber and Characterization of the Major Components Attributing to Malodor -An Analytical Example of the Odor Emitted from the Compost of Food Waste- (흡착 열탈착 장치와 GC/MS를 이용한 휘발성 유기화합물의 분석과 악취원인 성분의 예측 - 음식물 퇴비화 과정에서 발생되는 악취분석의 예 -)

  • Yu, Mee-Seon;Yang, Sung-Bong;Ahn, Jeong-Soo
    • Analytical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.80-86
    • /
    • 2002
  • The simultaneous analysis of the odorous compounds designated by law in Korea and Japan was examined with the thermal desorber gas chromatography-mass spectrometry using one column. The approximate concentrations of trimethyl amine, acetaldehyde, methyl mercaptan and dimethyl sulfide were estimated. Styrene, dimethyl disulfide, propionaldehyde, n-butyl aldehyde, i-butyl aldehyde, n-valeraldehyde, i-valeraldehyde, ethyl acetate, toluene, xylene, methyl i-butyl ketone and i-butanol were detected at concentrations of the detection limits of their threshold values. As a typical example of simultaneous analysis of the odorous compounds, the volatile organic compounds emitted from compost procedure of food waste were concentrated and analyzed with thermal desorber/GC/MSD, and major malodorous compounds were estimated from the concentrations and threshold values of the detected components. From the result of analysis, 34 compounds were confirmed and among them, trimethyl amine, i-valeraldehyde, methyl mercaptan, methyl allyl sulfide, dimethyl sulfide, acetaldehyde, ethanol, n-butyaldehyde were expected to attribute to the odor in order of strength.

Effects of Jeotkal Addition on Quality of Kimchi (젓갈의 첨가가 김치의 품질에 미치는 영향)

  • Ko, Young-Tae;Hwang, Ja-Kyung;Baik, In-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.123-128
    • /
    • 2004
  • Effects of jeotkal (salted-fermented seafoods) addition on acid production, growth of lactic acid bacteria, sensory properties, and volatile odor components of kimchi were investigated. Changes in pH and acidity of kimchi added with myulchi-aekjeot, kanari-aekjeot, and aekche-Jukjeot were similar to, whereas those of saeu-jeot sample on 0, 2, and 4 days of ripening were slightly different, those of control sample. Changes in pH and acidity of jogae-jeot sample during whole ripening period were markedly different from those of other samples. Numbers of lactic acid bacteria of all samples on 0 and 4 days were $1.8-2.6{\times}10^{5}\;and\;1.0-2.5{\times}10^{9}\;CFU/mL$, respectively. Overall acceptability and taste of kimchi added with jeotkal except jogae-jeot were higher than those of control sample, with saeu-jeot-added kimchi showing the highest scores. Eight volatile odor components were identified in 6-day-ripened kimchi samples, and those of saeu-jeot sample were slightly higher than those of other samples. Diallyl sulfide and methyl propyl disulfide were produced in 6-day-ripened samples. Ethanol, methyl allyl sulfide, and dimethyl disulfide concentrations increased, whereas that of allyl mercaptan decreased in 6-day-ripened samples compared to unripened ones.

Retention Time Prediction form Molecular Structure of Sulfur Compounds by Gas Chromatography (기체크로마토그래피에서 황화합물의 구조를 통한 용리시간 예측)

  • Kim, Young Gu;Kim, Won Ho;Pak, Hyung Suk
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.6
    • /
    • pp.646-651
    • /
    • 1998
  • The molecular structure of sulfur compounds and the retention relationship are studied by gas chromatography. Analyzed sulfur compounds are, hydrogen sulfide, sulfur dioxide, carbon disulfide, ethyl mercaptan, dimethyl sulfide, iso-propyl mercaptan, normal propyl mercaptan, ethyl methyl sulfide, tert-butyl mercaptan, tetrahydrothiophene, thiophene, and 2-chlorothiophene. Multiple linear regression explains the retention relationship of molecular descriptors. In GC the temperature program is 30$^{\circ}C$ held for 10.5 min, and then increased to 150$^{\circ}C$ at a rate 15$^{\circ}C$/min. Predicted equation for relative retention time (RRT) using SAS program is as follows; $RRT=0.121bp+14.39dp-8.94dp^2+0.0741sqmw-35.78\; (N=8,\; R^2=0.989, \;Variance=0.175,\;F=66.21)$. RRTs are function of boiling point, the square root of molecular weight, molecular dipole moment, and boiling point effects mostly on RRT. The RRT is maximized at the molecular dipole moment of 0.805D, when using nonpolar columns. The planar and highly symmetric compounds are eluted slowly. The square, of correlation coefficient $(R^2)$ using SAS program, is 0.989, and the variance is 0.175 in training sets. For three sulfur compounds, the variance between observed RRTs and predicted RRTs is 0.432 in testing sets.

  • PDF

Removal Efficiency of the Deodorization Equipment and Characteristics of Malodor during the Process in Co-treatment of Sewage and Food Waste of Su-young Wastewater Treatment Plant in Busan (부산수영하수처리장 하수와 음식물쓰레기 병합처리 시 공정별 악취특성 및 후처리시설 효율평가)

  • Lee, Hyung-Don;Kang, Dae-Jong;Lee, Min-Ho;Kang, Dong-Hyo;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.379-389
    • /
    • 2012
  • Environmental issues are being paid more attention due to income growth, urban overcrowding, and population growth in Korea. Among the various environmental problems, odor damage is the one of the serious factors. To take example for food waste combination treatment in Su-young wastewater treatment plant in Busan, many complaints occurred because this plant locate around residential areas. The purpose of this work is not only to analyze odorous elements and their contributions but also to evaluate odor quotient (OQ), sum of odor quotient (SOQ), and treatment efficiency of bio-filter. The results of dilution sensory test of complex odor, grinder, leachate, hopper indicated higher order complex odors happen in July and August. The main odorous elements consisted of hydrogen sulfide, ammonia, methly mercaptan and acetaldehyde, which were analyzed by instrumental detection method, and methyl mercaptan was exceeded over 3,571 times of threshold. In addition, result of contribution of odor was methyl mercaptan (49.95 to 59.08%), hydrogen sulfide (20.43 to 29.27%), trimethylamine (8.82 to 13.42%) and acetaldehyde (9.17 to 11.35%). Other facilities were compared with the contribution of the odor using OQ and SOQ during the process. Sulfur compounds, acetaldehyde, and trimethylamine are high contribution of odor using OQ as well as odor intensity of grinding process is highest. As a result, sulfur compounds (e.g., methyl mercaptan and hydrogen sulfide) are highest for OQ and SOQ of grinding process is highest as 7,067. The removal efficiency of deodorization equipment was more than 90.00% in ammonia and amines, but the average efficiency of sulfur compounds was 53.51%. Thus, this facility is more higher contribution of acetaldehyde and trimethylamine than other treatment facilities. And food waste treatment in environmental area needs to consider appropriate capacity and refers to other bio-filter operating conditions.

A study on the intraoral factor related to oral malodor (구취발생에 관여하는 구강내부요인에 관한 연구)

  • Jung, Mi-Ae;Lee, Eun-Sook
    • Journal of Korean society of Dental Hygiene
    • /
    • v.8 no.1
    • /
    • pp.119-131
    • /
    • 2008
  • This study was peformed in order to find out the relationship between the causing factors and the production of each gas 01 oral malodor, to contribute the oral malodor control at dental clinic as well as to establish the effective application of malodor control project for public oral health program 127 patients from 20 to 40 years old who had been visited for preventive dental cares were participated for the study. Such items as caries status, periodontal status, salivary flow, viscosity, pH. Snyder test, plaque deposit and tongue plaque were checked through the oral examination in order to find out the contributing factors Hydrogen sulfide, Methyl mercaptan, Di-methyl sulfide and Ammonia gas components were checked with Oral-Chroma and Attain, the oral malodor check units. Not only the corelation coefficiencies but also the multi-way variance analysis were calculated between each causing factor and each component of oral malodor gases to estimate the contributing factors of the oral malodor. 1. There was no relationship between the caries status and each component pf the oral malodor such as sulfur compound or Ammonia, both in laboratory test and VAS test (pF0.05). It revealed negative relationship between Hydrogen sulfide and FT(rM-0.1904. pE0.05) as well as the VAS and FT (rM-0.210. pE0.05). S0, it was estimated that the less oral malador was recognized when caries state changed to filled state in Hydrogen sulfide laboratory test or VAS test 2. High relationship was showed between salivary flow and Hydrogen sulfide (rM-0.183, pM0.039), Methyl mercaptan(rM-0.234, p-0.008). Dimethyl sulfide(rM-0.234, pM0.008) and Ammonia(-0.361. pM0.001) gas(pE0.05). 3. There was a high relationship between M-PHP(Modified-Patient Hygiene Performance Index) and tong plaque all kinds of sulfide(rM0.249. pM0.005). Ammonia gas component(rM0.232, pM0.009). 4. It was found that considerable relationship was appeared between the periodontal status and Ammonia gas (rM0.274, pM0.002), so, it should be needed to control Ammonia. Such dental Cares as the prevention or early treatment of periodontal disease and the accelerating the salivary flow as well as reducing the amounts and activities of filament or spiral typed oral micro-organism were recommended for adults, not only for dental care program at the dental clinics but also for public health programs, in order to promote the oral health and quality of file for individual and community peoples.

  • PDF