DOI QR코드

DOI QR Code

Weissella cibaria CMU suppresses mgl gene expression and enzyme activity associated with bad breath

  • Kim, Hyun-Jin (Institute of Biomaterial Implant, Department of Oral Anatomy, School of Dentistry, Wonkwang University) ;
  • Yeu, Ji-Eun (Research Institute, OraPharm Inc) ;
  • Lee, Dong-Suk (School of Nursing, Kangwon National University) ;
  • Kang, Mi-Sun (Research Institute, OraPharm Inc)
  • 투고 : 2019.09.23
  • 심사 : 2019.11.20
  • 발행 : 2019.12.31

초록

The oral care probiotic strain Weissella cibaria CMU (oraCMU) inhibits volatile sulphur compounds associated with halitosis, presumably by inhibiting the growth of associated oral pathogens. In the present study, we investigated whether oraCMU inhibits the production of these compounds by suppressing the expression of mgl. This gene encodes L-methionine-α-deamino-γ-mercaptomethane-lyase (METase) and is involved in the production of methyl mercaptan (CH3SH) by Porphyromonas gingivalis. Therefore, we specifically investigated the effects of oraCMU on the growth, CH3SH production, METase activity, and mgl expression of P. gingivalis. The minimum inhibitory concentrations of cell-free supernatant and secreted proteins from oraCMU were 125 mg/mL and 800 ㎍/mL, respectively. At sub-minimum inhibitory concentration levels, these metabolites inhibited CH3SH production, but they also reduced P. gingivalis viability. Only heat-killed oraCMU decreased CH3SH production without affecting P. gingivalis viability. Heat-killed oraCMU also inhibited METase activity toward L-methionine and mgl mRNA expression (p < 0.05). In summary, we demonstrated the inhibition of volatile sulphur compounds via the antimicrobial action of oraCMU and, for the first time, the inhibition of such compounds by heat-killed oraCMU, which occurred at the molecular level.

키워드

참고문헌

  1. Kleinberg I, Westbay G. Oral malodor. Crit Rev Oral Biol Med 1990;1:247-59. doi: 10.1177/10454411900010040401.
  2. Persson S, Edlund MB, Claesson R, Carlsson J. The formation of hydrogen sulfide and methyl mercaptan by oral bacteria. Oral Microbiol Immunol 1990;5:195-201. doi: 10.1111/j.1399-302x.1990.tb00645.x.
  3. De Boever EH, Loesche WJ. Assessing the contribution of anaerobic microflora of the tongue to oral malodor. J Am Dent Assoc 1995;126:1384-93. doi: 10.14219/jada.archive.1995.0049.
  4. Nakano Y, Yoshimura M, Koga T. Correlation between oral malodor and periodontal bacteria. Microbes Infect 2002;4:679-83. doi: 10.1016/s1286-4579(02)01586-1.
  5. Tonzetich J. Production and origin of oral malodor: a review of mechanisms and methods of analysis. J Periodontol 1977;48:13-20. doi: 10.1902/jop.1977.48.1.13.
  6. Yoshimura M, Nakano Y, Yamashita Y, Oho T, Saito T, Koga T. Formation of methyl mercaptan from L-methionine by Porphyromonas gingivalis. Infect Immun 2000;68:6912-6. doi:10.1128/iai.68.12.6912-6916.2000.
  7. Bustamante M, Oomah BD, Mosi-Roa Y, Rubilar M, Burgos-Diaz C. Probiotics as an adjunct therapy for the treatment of halitosis, dental caries and periodontitis. Probiotics Antimicrob Proteins 2019. doi: 10.1007/s12602-019-9521-4. [Epub ahead of print]
  8. Suzuki N, Yoneda M, Takeshita T, Hirofuji T, Hanioka T. Induction and inhibition of oral malodor. Mol Oral Microbiol 2019;34:85-96. doi: 10.1111/omi.12259.
  9. Masdea L, Kulik EM, Hauser-Gerspach I, Ramseier AM, Filippi A, Waltimo T. Antimicrobial activity of Streptococcus salivarius K12 on bacteria involved in oral malodour. Arch Oral Biol 2012;57:1041-7. doi: 10.1016/j.archoralbio.2012.02.011.
  10. Suzuki N, Yoneda M, Tanabe K, Fujimoto A, Iha K, Seno K, Yamada K, Iwamoto T, Masuo Y, Hirofuji T. Lactobacillus salivarius WB21--containing tablets for the treatment of oral malodor: a double-blind, randomized, placebo-controlled crossover trial. Oral Surg Oral Med Oral Pathol Oral Radiol 2014;117:462-70. doi: 10.1016/j.oooo.2013.12.400.
  11. Keller MK, Bardow A, Jensdottir T, Lykkeaa J, Twetman S. Effect of chewing gums containing the probiotic bacterium Lactobacillus reuteri on oral malodour. Acta Odontol Scand 2012;70:246-50. doi: 10.3109/00016357.2011.640281.
  12. Kang MS, Kim BG, Chung J, Lee HC, Oh JS. Inhibitory effect of Weissella cibaria isolates on the production of volatile sulphur compounds. J Clin Periodontol 2006;33:226-32. doi:10.1111/j.1600-051X.2006.00893.x.
  13. Jang HJ, Kang MS, Yi SH, Hong JY, Hong SP. Comparative study on the characteristics of Weissella cibaria CMU and probiotic strains for oral care. Molecules 2016;21:E1752. doi:10.3390/molecules21121752.
  14. Bjorkroth KJ, Schillinger U, Geisen R, Weiss N, Hoste B, Holzapfel WH, Korkeala HJ, Vandamme P. Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. Int J Syst Evol Microbiol 2002;52(Pt 1):141-8. doi: 10.1099/00207713-52-1-141.
  15. Kang BK, Cho MS, Park DS. Red pepper powder is a crucial factor that influences the ontogeny of Weissella cibaria during kimchi fermentation. Sci Rep 2016;6:28232. doi: 10.1038/srep28232.
  16. Sanchez B, Chaignepain S, Schmitter JM, Urdaci MC. A method for the identification of proteins secreted by lactic acid bacteria grown in complex media. FEMS Microbiol Lett 2009;295:226-9. doi: 10.1111/j.1574-6968.2009.01599.x.
  17. Lim HS, Yeu JE, Hong SP, Kang MS. Characterization of antibacterial cell-free supernatant from oral care probiotic Weissella cibaria, CMU. Molecules 2018;23:E1984. doi: 10.3390/molecules23081984.
  18. Tunney MM, Ramage G, Field TR, Moriarty TF, Storey DG. Rapid colorimetric assay for antimicrobial susceptibility testing of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2004;48:1879-81. doi: 10.1128/aac.48.5.1879-1881.2004.
  19. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959;82:70-7. doi: 10.1016/0003-9861(59)90090-6.
  20. Xu X, Zhou XD, Wu CD. Tea catechin EGCg suppresses the mgl gene associated with halitosis. J Dent Res 2010;89:1304-8. doi: 10.1177/0022034510378682.
  21. Nonnenmacher C, Dalpke A, Mutters R, Heeg K. Quantitative detection of periodontopathogens by real-time PCR. J Microbiol Methods 2004;59:117-25. doi: 10.1016/j.mimet.2004.06.006.
  22. Do KH, Park HE, Kang MS, Kim JT, Yeu JE, Lee WK. Oral malodor-reducing effects by oral feeding of Weissella cibaria CMU in Beagle dogs. Korean J Vet Res 2018;58:87-94. doi:10.14405/kjvr.2018.58.2.87.
  23. Do KH, Park HE, Kang MS, Kim JT, Yeu JE, Lee WK. Effects of Weissella cibaria CMU on halitosis and calculus, plaque, and gingivitis indices in beagles. J Vet Dent 2019;36:135-42. doi: 10.1177/0898756419872562.
  24. Park HR, Kim HJ, Kang MS. Clinical studies on the dental caries prevention effects of the ability of Weissella cibaria CMU to adhere to the oral cavity. Indian J Public Health Res Dev 2018;9:1163-9. doi: 10.5958/0976-5506.2018.01155.5.
  25. Kang MS, Lim HS, Kim SM, Lee HC, Oh JS. Effect of Weissella cibaria on Fusobacterium nucleatum-induced interleukin-6 and interleukin-8 Production in KB cells. J Bacteriol Virol 2011;41:9-18. doi: 10.4167/jbv.2011.41.1.9.
  26. Yu HS, Lee NK, Choi AJ, Choe JS, Bae CH, Paik HD. Anti-inflammatory potential of probiotic strain Weissella cibaria JW15 isolated from Kimchi through regulation of NF-${\kappa}B$ and MAPKs pathways in LPS-induced RAW 264.7 cells. J Microbiol Biotechnol 2019;29:1022-32. doi: 10.4014/jmb.1903.03014.
  27. Hong YF, Lee YD, Park JY, Kim S, Lee YW, Jeon B, Jagdish D, Kim H, Chung DK. Lipoteichoic acid isolated from Weissella cibaria increases cytokine production in human monocyte-like THP-1 cells and mouse splenocytes. J Microbiol Biotechnol 2016;26:1198-205. doi: 10.4014/jmb.1601.01047.
  28. Lee HA, Song BR, Kim HR, Kim JE, Yun WB, Park JJ, Lee ML, Choi JY, Lee HS, Hwang DY. Butanol extracts of Asparagus cochinchinensis fermented with Weissella cibaria inhibit iNOS-mediated COX-2 induction pathway and inflammatory cytokines in LPS-stimulated RAW264.7 macrophage cells. Exp Ther Med 2017;14:4986-94. doi: 10.3892/etm.2017.5200.
  29. Kwak SH, Cho YM, Noh GM, Om AS. Cancer preventive potential of Kimchi lactic acid bacteria (Weissella cibaria, Lactobacillus plantarum). J Cancer Prev 2014;19:253-8. doi:10.15430/JCP.2014.19.4.253.
  30. Baruah R, Maina NH, Katina K, Juvonen R, Goyal A. Functional food applications of dextran from Weissella cibaria RBA12 from pummelo (Citrus maxima). Int J Food Microbiol 2017;242:124-31. doi: 10.1016/j.ijfoodmicro.2016.11.012.
  31. Kang MS, Yeu JE, Hong SP. Safety evaluation of oral care probiotics Weissella cibaria CMU and CMS1 by phenotypic and genotypic analysis. Int J Mol Sci 2019;20:E2693. doi:10.3390/ijms20112693.
  32. Ouhara K, Iwasaki Y, Kajiya M, Savitri IJ, Kitagawa M, Tokunaga N, Shintani T, Ogawa I, Hino T, Fujita T, Shiba H, Kurihara H. The differential expression of mgl mRNA by Porphyromonas gingivalis affects the production of methyl mercaptan. Oral Dis 2015;21:626-33. doi: 10.1111/odi.12326.
  33. Fujiwara N, Murakami K, Nakao M, Toguchi M, Yumoto H, Amoh T, Hirota K, Matsuo T, Sano S, Ozaki K, Miyake Y. Novel reuterin-related compounds suppress odour by periodontopathic bacteria. Oral Dis 2017;23:492-7. doi: 10.1111/odi.12638.