• Title/Summary/Keyword: Method of generalized mode

Search Result 107, Processing Time 0.033 seconds

A Numerical Analysis Approach for Design of Cable Dome Structures (케이블 돔 구조물 설계를 위한 수치해석 방법)

  • Kim, Jae-Yeol;Jang, Dong-Woo
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.89-94
    • /
    • 2008
  • This paper deals with the method of self-equilibrium stress mode analysis of cable dome structures. From the point of view of analysis, cable dome structure is a kind of unstable truss structure which is stabilized by means of introduction of prestressing. The prestress must be introduced according to a specific proportion among different structural member and it is determined by an analysis called self-equilibrium stress mode analysis. The mathematical equation involved in the self-equilibrium stress mode analysis is a system of linear equations which can be solved numerically by adopting the concept of Moore-Penrose generalized inverse. The calculation of the generalized inverse is carried out by rank factorization method. This method involves a parameter called epsilon which plays a critical role in self-equilibrium stress mode analysis. It is thus of interest to investigate the range of epsilon which produces consistent solution during the analysis of self-equilibrium stress mode.

  • PDF

A Hydroelastic Analysis of a Floating Fish Cage in Waves (부유식 가두리 양식장의 파랑중 유탄성 응답 해석)

  • Choi, Yoon-Rak;Yeo, Hwan-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.7-11
    • /
    • 2009
  • The dynamic responses and drift forces in waves of a floating circular fish cage are analyzed considering hydroelastic effects. The method of generalized mode is used to calculate the hydroelastic responses of the floater of cage. The elastic mode shapes, generalized mass, and stiffness in dry mode are evaluated by using a structural analysis code. The higher-order boundary element method is adopted to analyze the interaction between fluid and deformable structure. Some results of vertical motions and drift forces are shown and compared with those for a rigid body.

Analysis of Scattering Characteristics of the Rectangular Waveguide with a Horizontal Conducting Post using Mode Matching Method and Generalized Scattering Method (모드매칭법과 일반산란계수법을 이용한 수평 금속봉을 갖는 구형 도파관의 산란 특성 해석)

  • 김원기;김상태;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.7
    • /
    • pp.698-705
    • /
    • 2004
  • In this paper, we present the analysis method for a rectangular waveguide with horizontal conducting post using mode matching method and generalized scattering method. Scattering characteristics of a rectangular waveguide with the horizontal conducting post according to radius and height of the post are simulated by the proposed method. The simulated results by proposed method show good agreement with the measured results and the HFSS's results. Proposed method are easily applied to the design of a waveguide component with horizontal conducting posts.

Model Updating of a Car Body Structure Using a Generalized Free-Interface Mode Sensitivity Method (일반화 자유경계 모드 감도법을 이용한 차체구조물의 모델개선)

  • Jang, Gyeong-Jin;Park, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1133-1145
    • /
    • 2000
  • It is necessary to develop an efficient analysis method to identify the dynamic characteristics of a large mechanical structure and update its finite element model. That is because these processes need the huge computation of a large structure and iterative estimation due to the use of the first- order sensitivity. To efficiently carry out these processes, a new method, called the generalized free-interface mode sensitivity method, has been proposed in the authors' preceeding paper. This method is based on substructuring approach such as a free-interface method and a generalized synthesis algorithm. In this paper, the proposed method is applied to the model updating of a car body structure to verify its accuracy and reliability for a large mechanical structure.

A generalized adaptive variational mode decomposition method for nonstationary signals with mode overlapped components

  • Liu, Jing-Liang;Qiu, Fu-Lian;Lin, Zhi-Ping;Li, Yu-Zu;Liao, Fei-Yu
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.75-88
    • /
    • 2022
  • Engineering structures in operation essentially belong to time-varying or nonlinear structures and the resultant response signals are usually non-stationary. For such time-varying structures, it is of great importance to extract time-dependent dynamic parameters from non-stationary response signals, which benefits structural health monitoring, safety assessment and vibration control. However, various traditional signal processing methods are unable to extract the embedded meaningful information. As a newly developed technique, variational mode decomposition (VMD) shows its superiority on signal decomposition, however, it still suffers two main problems. The foremost problem is that the number of modal components is required to be defined in advance. Another problem needs to be addressed is that VMD cannot effectively separate non-stationary signals composed of closely spaced or overlapped modes. As such, a new method named generalized adaptive variational modal decomposition (GAVMD) is proposed. In this new method, the number of component signals is adaptively estimated by an index of mean frequency, while the generalized demodulation algorithm is introduced to yield a generalized VMD that can decompose mode overlapped signals successfully. After that, synchrosqueezing wavelet transform (SWT) is applied to extract instantaneous frequencies (IFs) of the decomposed mono-component signals. To verify the validity and accuracy of the proposed method, three numerical examples and a steel cable with time-varying tension force are investigated. The results demonstrate that the proposed GAVMD method can decompose the multi-component signal with overlapped modes well and its combination with SWT enables a successful IF extraction of each individual component.

Prediction of Dynamic Characteristics of Continuous Structures due to the Modification of Stiffness (강성 변경에 따른 연속체 구조물의 동특성 변화 예측)

  • Lee, Jung-Youn
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.82-88
    • /
    • 1997
  • This paper derives the generalized stiffness to find dynamic characteristics and its derivatives of a continuous system. And a new sensitivity analysis method is presented by using the amount of change of generalized stiffness and vibrational mode caused by the variation of stiffness. In this paper, to get or detect appropriate results, cantilever beam and stepped beam and stepped beam are used. Deviations of sensitivity coefficient, natural frequency, and vibrational mode are calculated as result, and compared with the theoretical exact values.

  • PDF

Long-Period Fiber Grating Analysis Using Generalized N×N Coupled-Mode Theory by Section-Wise Discretization

  • Jeong, Yoon-Chan;Lee, Byoung-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.55-63
    • /
    • 1999
  • For the precise analysis and design of LPFG's, a new method of generalized N$\times$N coupled-mode theory by section-wise discretization was proposed. This is applicable to the analysis for arbitrary grating structures, which can readily take grating nonuniformities and multimode couplings into account. Utilizing the method, several analyses of LPFG's were presented, and relationships between the grating structures and their spectral responses were discussed.

A Model Reduction Method for Effective Analysis of Structures (구조물의 효율적인 해석을 위한 모델 축소기법 연구)

  • Park, Young-Chang;Hwang, Jai-Hyuk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.28-35
    • /
    • 2006
  • Substructure coupling or component mode synthesis may be employed in the solution of dynamic problems for large, flexible structures. The model is partitioned into several subdomains, and a generalized Craig-Bampton representation is derived. In this paper the mode sets (normal modes, constraint modes) is employed for model reduction. A generalized model reduction procedure is described. Vaious reduction methods that use constraint modes is described in detail. As examples, a flexible structure and a 10 DOF damped system are analyzed. Comparison with a conventional reduction method based on a complete model is made via eigenpair and dynamic responses.

  • PDF

Prediction of Dynamic Characteristics of Continuous Systems Due to the Mass Modification (질량변경에 따른 연속계의 동특성변화 예측)

  • 이정윤;최상렬;박천권;오재응;정석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.248-256
    • /
    • 1993
  • This paper deriver the generalized mass to find dynamic characteristics and its derivatives of a continous system. And a new sensitivity analysis method is presented by using the amount of change of generalized mass and vibrational mode caused by the variation of lumped and distributed mass. In this paper, to get or detect appropriate results, cantilever beam and stepped beam are used. Deviations of sensitivity coefficient, natual frequency, vibrational mode and transfer function are calculated as result, and compared with the theoretical exact values.

Evaluation of mode-shape linearization for HFBB analysis of real tall buildings

  • Tse, K.T.;Yu, X.J.;Hitchcock, P.A.
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.423-441
    • /
    • 2014
  • The high frequency base balance (HFBB) technique is a convenient and relatively fast wind tunnel testing technique for predicting wind-induced forces for tall building design. While modern tall building design has seen a number architecturally remarkable buildings constructed recently, the characteristics of those buildings are significantly different to those that were common when the HFBB technique was originally developed. In particular, the prediction of generalized forces for buildings with 3-dimensional mode shapes has a number of inherent uncertainties and challenges that need to be overcome to accurately predict building loads and responses. As an alternative to the more conventional application of general mode shape correction factors, an analysis methodology, referred to as the linear-mode-shape (LMS) method, has been recently developed to allow better estimates of the generalized forces by establishing a new set of centers at which the translational mode shapes are linear. The LMS method was initially evaluated and compared with the methods using mode shape correction factors for a rectangular building, which was wind tunnel tested in isolation in an open terrain for five incident wind angles at $22.5^{\circ}$ increments from $0^{\circ}$ to $90^{\circ}$. The results demonstrated that the LMS method provides more accurate predictions of the wind-induced loads and building responses than the application of mode shape correction factors. The LMS method was subsequently applied to a tall building project in Hong Kong. The building considered in the current study is located in a heavily developed business district and surrounded by tall buildings and mixed terrain. The HFBB results validated the versatility of the LMS method for the structural design of an actual tall building subjected to the varied wind characteristics caused by the surroundings. In comparison, the application of mode shape correction factors in the HFBB analysis did not directly take into account the influence of the site specific characteristics on the actual wind loads, hence their estimates of the building responses have a higher variability.