• 제목/요약/키워드: Methanol-Diesel Engine

검색결과 15건 처리시간 0.022초

커먼레일 연료 분사 방식 과급 디젤기관에서 비에스테르화 폐식용유의 적용 (Application of wasted soybean oil non-esterified on turbo-charged diesel engines with common rail fuel injection system)

  • 정석호;김경현;이한성;고대권
    • 수산해양기술연구
    • /
    • 제49권1호
    • /
    • pp.51-57
    • /
    • 2013
  • A demand for bio-diesel oil increases as one of solution for exhaustion of fossil fuel and reduction of $CO_2$ emission, and research on bio-diesel is being carried out. Bio-diesel oil is mainly esterified from vegetable oil with methanol in order to use for fuel on diesel engine and has demerit that costs are increased as compared with directly using like non-esterified one. Bio-diesel oil within 3% mixed with gas oil is used at present, proportion of bio-diesel oil will be increase by 5% in future. We judged that wasted soybean oil non-esterified could be used on diesel engine with an electronic fuel injection according to previous researches with a mechanical fuel injection. A performance test using only gas oil, gas oil with esterified bio-diesel oil 5% and wasted soybean oil non-esterified 5% on diesel engine with the electronic fuel injection were carried out. It is noticed that gas oil with wasted soybean oil non-esterified 5% has more similar characteristics to gas oil than gas oil with esterified bio-diesel oil 5%.

小型 디이젤機關에 있어서 알코올 利용에 관한 硏究

  • 노상순;허병무
    • 대한기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.386-394
    • /
    • 1987
  • 본 연구에서는 우수한 출력성능 때문에 광범위한 범위에서 사용되고 있는 디 이젤기관을 그 대상으로 하여 실요상 보다 간편하고 액체연료만이 아니고 기체연료의 사용도 가능한 기화디이젤법, 즉 추연료로서 알코올을 흡기관으로부터 흡입시키는 한 편, 연소실내에 착화원으로서 경유를 분사시켜 알코올의 연소를 확보하도록 하는 방법 을 이용하여 기관의 연소성, 출력성능, 또는 배기특성 등에 대하여, 조사분석하여 알 코올이 대체연로로서의 이용가능성을 확고히 하고져 함에 그 목적이 있다.

디젤기관의 연소와 배출물에 관한 연구 (A study on Combustion and Exhaust Emission of Diesel Engine)

  • 조진호;김형섭;박정률
    • 오토저널
    • /
    • 제13권5호
    • /
    • pp.81-88
    • /
    • 1991
  • Combustion characteristic, concentration of NOx and exhaust smoke opacity was experimentally tested, according to fuel injection timing, mixing ratio of water and methanol for the driving condition of 2000 rpm of engine revolution and constant load(7.5kg/cm$^{2}$) using emulsified fuel of gas oil-water methanol. The result obtained was as following. Thermal efficiency indicated highly 0.4-2.7% for emulsified fuel then gas oil, and injection timing when maximum thermal efficiency, slicily risen then gas oil. For constant fuel injection timing ignition lag was increased, combustion duration decreased, maximum heat release rate indicated high, and concentration of NOx and exhaust smoke opacity is decreased, as function of water and methanol content y was higher.

  • PDF

신재생에너지로서 DME 연료의 첨가제 개발 (Development of additives for DME as a renewable energy)

  • 장은정;박천규;임의순;정충섭;이봉희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.178.1-178.1
    • /
    • 2011
  • DME is generally expected to be used as a promising clean alternative fuel to diesel fuel. DME is not natural product but a synthetic product that is produced either through the dehydration of methanol or a direct synthetic from syngas. As DME has no carbon-carbon bond in its molecular structure and is an oxygenate fuel, it's combustion essentially generates no soot. DME has such cetane number of 55~60 that it can be used as a diesel engine fuel. However, DME has low lubricity but a proven method to solve the poor lubricity is by adding lubricity improver. Therefore, the aim of this study is to develop lubricity improver of DME as a transport fuel in Korea. In this study, we investigated a possibility of fatty acid ester compounds as a candidate to improve DME lubricity as compared with current lubricity improver of diesel. We also evaluated quality characteristics, storage stability of DME with lubricity additives.

  • PDF

공동현상을 고려한 커먼레일용 고압 DME 인젝터 노즐의 최적 설계 연구 (Study on the Optimum Design of High Pressure Common-rail DME Injector Nozzle with Consideration of Cavitation)

  • 정수진;박정권;이상인
    • 한국자동차공학회논문집
    • /
    • 제21권1호
    • /
    • pp.99-106
    • /
    • 2013
  • DME (Di-Methyl Ether) is synthetic product that is produced through dehydration of methanol or a direct synthesis from syngas. And it is able to save fossil fuel and reduce pollutants of emission such as PM and $CO_2$. In spite of its advantages it is difficult to design DME fuelled engine system because DME fuel may cause to severely generate cavitation and corrosion in fuel delivery system due to physical properties of DME. Therefore, in this study three-dimensional internal flow characteristics with consideration of cavitation were predicted in the DME injector using diesel and DME fuel. Moving grid technique was employed to describe needle motion and 1-D hydraulic simulation of injector was also simulated to obtain transient needle motion profiles. The results of simulation show that cavitations was generated at the inlet of nozzle near high velocity region both diesel and DME. And mass flow rate of DME is reduced by 4.73% compared to that of diesel at maximum valve lift because cavitation region of DME is much more larger. To increase flow rate of DME injector, internal flow simulation has been conducted to investigate the nozzle hole inner R-cut effect. The flow rates of diesel and DME increase as R-cut increases, and flow coefficient of DME fuel injector was increased by 6.3% on average compared with diesel fuelled injector. Finally, optimum shape of DME injector nozzle is suggested through the comparison of flow coefficient with variation of nozzle hole inner R-cut.