• Title/Summary/Keyword: Methanol to olefins

Search Result 13, Processing Time 0.023 seconds

Techno-Economic Analysis of Methanol to Olefins Separation Processes (메탄올을 이용한 올레핀 생산 분리공정의 기술 및 경제성 분석)

  • Park, Jonghyun;Jeong, Youngmin;Han, Myungwan
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.69-83
    • /
    • 2020
  • Light olefins are important petrochemicals as well as primary building blocks for various chemical intermediates. As the number of ethane cracking center (ECC) process, in which ethylene accounts for most of the production, has increased in recent years, propylene supply is not catching up with steadily increasing propylene demand. This trend makes the conversion of methanol to olefins to get more industrial importance. The methanol to olefins (MTO) process produces methanol through syngas and obtain olefins such as propylene through methanol. Since the reaction from methanol to olefins provides different product compositions depending on the catalyst used for the reaction, it is important to choose an appropriate separation process for the reaction product with different composition. Four different separation processes are considered for four representative cases of product compositions. The separation processes for the reaction products are evaluated by techno-economic analysis based on the simulation results using Aspen plus. Guidelines are provided for selecting a suitable separation process for each of representative case of product compositions in the MTO process.

Mechanism of Methanol Conversion over Zeolite and Molecular Sieve Catalysts (제올라이트와 분자체 촉매에서 메탄올 전환 반응의 기구)

  • Seo, Gon;Min, Byung Goo
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.329-339
    • /
    • 2006
  • The production of lower olefins from methanol becomes an attractive process because of the rapid increase in crude oil price. This paper reivews the conversion mechanisms of methanol to hydrocarbons over zeolite and SAPO molecular sieve catalysts to understand the formation steps of lower olefins from methanol. The feasibility of the conversion mechanisms such as the direct mechanism based on well-defined intermediates and the hydrocarbon pool mechanism involving hydrocarbon moieties as an active centers is discussed with reepect to the induction period, the selectivity for products and the deactivation phenomena of the methanol conversion. The literature appeered since 1999 for the structure of the hydrocarbon pool and its catalytic role in the methanol conversion are summariged, and the prospect for the methanol-to-olefins process is described.

Effect of Water Addition on the Conversion of Dimethyl Ether to Light Olefins over SAPO-34 (SAPO-34 촉매상에서 디메틸에테르로부터 경질올레핀 제조 및 물의 첨가 효과)

  • Baek, Seung-Chan;Lee, Yun-Jo;Jun, Ki-Won
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.345-349
    • /
    • 2006
  • Conversion of DME (dimethyl ether) or methanol to light olefins (ethylene, propylene, butenes) over SAPO-34 were systematically studied, where it was observed that DME was dehydrated to light olefins and partially converted to by-products such as CO and $CO_2$ at various reaction temperatures on the time-on-stream. SAPO-34 catalyst during the DTO (dimetyl ether-to-olefins) reaction was significantly deactivated compared with MTO (methanol-toolefins) reaction. By addition of water to the reaction feed, the yield to light olefins was not only increased, but the life time of the catalyst was also prolonged by the suppression of the coke formation by steam.

Conversion of Methanol to Hydrocarbons over Heteropoly Acids(I) (헤테로폴리산 촉매에 의한 탄화수소로의 메탄올 전환반응(I))

  • Hong, Seong-Soo;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.2 no.4
    • /
    • pp.363-371
    • /
    • 1991
  • The catalytic performance and availability of heteropoly compounds for the conversion of methanol to hydrocarbons have been studied. The effects of reaction conditions such as reaction temperature, methanol partial pressure and residence time and the effects of ion-exchange of the catalysts were examined for enhancing the yield of hydrocarbons and the selectivity of low olefins. Their acid strength depended on the kind of countercation, and the yield of hydrocarbons and the selectivity for propylene to propane were closely related to the electronegativity of the corresponding countercations. In contrast to the other heteropoly compounds, the ammonium salt showed a considerably high catalytic activity and a high selectivity for paraffins to low olefins.

  • PDF

Synthesis of (E,E)-2,4-Dienols from (E)-$\beta$-Chloro-$\gamma$-hydroxy-vinylmercurials and Olefins by Palladium(Ⅱ) Salt

  • Kim, Jin-Il;Lee, Jong-Tae;Choi, Cheol-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.235-237
    • /
    • 1986
  • Reaction of $(E)-{\beta}-chloro-{\gamma}$-hydroxyvinylmercurials, prepared by mercuration of propargyl alcohol and 2-methyl-3-butyne-2-ol, with olefins in the presence of a catalytic amount of $Li_2PdCl_4$ and 2 equiv of cupric chloride in methanol at $50^{\circ}C$ gave the corresponding (E,E)-2,4-dienols in moderate yields. However, addition of 1 equiv of inorganic bases such as magnesium oxide to the reaction mixture brings a rapid and clean vinylation and gave high yields of the dienols at room temperature. In the case of hindered (E)-2-chloro-3-chloromercuri-2-buten-1,4-diol prepared from 2-butyne-1,4-diol, reaction with olefins gave the dienols only in low yields even in the presence of 2 equiv of magnesium oxide.

Reaction Characteristics and Catalytic Stability for the Methanol Conversion over ZSM-5 Catalyst (ZSM-5 촉매상에서 메탄올의 전환반응, 반응특성과 안정성)

  • Sang Eon Park;Hak Ze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.3
    • /
    • pp.172-176
    • /
    • 1981
  • The formation of $C_2-C_{10}$ hydrocarbons from methanol over shape-selective ZSM-5 zeolite catalysts is studied. It seems that $C_2-C_5$ olefins formed from methanol via dimethylether are transformed further to higher hydrocarbons containing higher concentration of aromatics by the acid sites of ZSM-5. Unique cross linked channel structure and its hydrophobicity seems to be mainly responsible for its high activity of ZSM-5 catalyst for the conversion of methanol.

  • PDF

Methanol-to-Olefin Conversion over UZM-9 Zeolite: Effect of Transition Metal Ion Exchange on its Deactivation (UZM-9 제올라이트에서 메탄올의 올레핀으로 전환반응: 전이금속 이온 교환이 촉매의 활성저하에 미치는 영향)

  • Kim, Sun Jung;Jang, Hoi-Gu;Seo, Gon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.181-188
    • /
    • 2013
  • The effect of transition metal ion exchange into UZM-9 zeolite with LTA framework on its deactivation in methanol-to-olefin (MTO) conversion was discussed. The ion exchange of copper, cobalt, nickel, and iron did not induce any notable change in the crystallinity, crystal morphology, and acidity of UZM-9. The small cage entrance of UZM-9 caused the high selectivity to lower olefins in the MTO conversion, while its large cages allowed the rapid further cyclecondensation of active intermediates, polymethylbenzenes including hexamethylbenzene, resulting in a rapid deactivation. The UZM-9 containing copper and cobalt ions showed considerably slow deactivations. The interaction between transition metal ions and polymethylbenzene cation radicals, the active intermediates, generated in the MTO conversion stabilized the radicals and slowed down the deactivation of UZM-9.

Synthesis of the Hydrocarbons from Methanol over ZSM-5 Zeolite Catalyst (ZSM-5 제올라이트 촉매상에서의 메탄올로부터 탄화수소 합성반응)

  • Sang Eon Park;Hak Ze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.97-102
    • /
    • 1981
  • The conversion of methanol to hydrocarbons has been studied over synthetic ZSM-5 zeolite catalyst having high silica to alumina ratio. The conversion products were olefins, paraffins, cycloparaffins, and aromatics, and the catalyst showed especially high selectivity toward the formation of aromatics. The catalyst showed the shape-selectivity and the size of molecules in the product was limited approximately to the size of 1,3,5-trimethylbenzene. Hydrogen form(HZSM-5) was more active, indicating reactions following the dehydration of methanol seemed to be mainly catalyzed by acid sites. Comparison of the reaction characteristics and acid site distribution of the ZSM-5 catalyst with those of mordenite and faujasite type catalysts suggests that cross-linked pore channel structure and the strong acidity of the ZSM-5 catalyst are primarily responsible for the selective formation of aromatics over this catalyst.

  • PDF

Synthesis of Dimethyl Carbonate by Oxidative Carbonylation of Methanol over Cu Catalysts (구리촉매 상에서의 메탄을 산화카르보닐화에 의한 디메틸카보네이트 합성)

  • Park, Jin-Seok;Suh, Young-Woong;Park, Tae-Jin;Suh, Dong-Jin
    • Clean Technology
    • /
    • v.14 no.3
    • /
    • pp.160-165
    • /
    • 2008
  • The synthesis of dimethyl carbonate (DMC) with Cu catalysts was investigated in a semi-batch high-pressure reactor. DMC was synthesized via the direct oxidative carbonylation of carbon monoxide with oxygen in methanol. The corrosion rate was evaluated fie the weight change for SUS test pieces which had been added into the reactor. In order to reduce the corrosion rate without significantly losing DMC yield, various additives such as amines, olefins, and other metal salts were used. When 1-methylimidazole was used as an additive, 18.6% of DMC yield could be obtained without corrosion. If the amount of 1-methylimidazole was decreased, a high DMC yield (33.2%) could be obtained with a low corrosion rate (0.5%).

  • PDF

Prediction of Axial Solid Holdups in a CFB Riser

  • Park, Sang-Soon;Chae, Ho-Jeong;Kim, Tae-Wan;Jeong, Kwang-Eun;Kim, Chul-Ung;Jeong, Soon-Yong;Lim, JongHun;Park, Young-Kwon;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.878-883
    • /
    • 2018
  • A circulating fluidized bed (CFB) has been used in various chemical industries because of good heat and mass transfer. In addition, the methanol to olefins (MTO) process requiring the CFB reactor has attracted a great deal of interest due to steep increase of oil price. To design a CFB reactor for MTO pilot process, therefore, we has examined the hydrodynamic properties of spherical catalysts with different particle size and developed a correlation equation to predict catalyst holdup in a riser of CFB reactor. The hydrodynamics of micro-spherical catalysts with average particle size of 53, 90 and 140 mm was evaluated in a $0.025m-ID{\times}4m-high$ CFB riser. We also developed a model described by a decay coefficient to predict solid hold-up distribution in the riser. The decay coefficient developed in this study could be expressed as a function of Froude number and dimensionless velocity ratio. This model could predict well the experimental data obtained from this work.