• 제목/요약/키워드: Methanol steam reforming

검색결과 40건 처리시간 0.022초

메탄올 수증기 개질반응에서 알루미나 및 하이드로탈사이트를 이용한 니켈 및 구리 촉매 비교 연구 (Comparative Study of Nickel and Copper Catalysts Using Al2O3 and Hydrotalcite in Methanol Steam Reforming)

  • 이재혁;장승수;안호근
    • 한국가스학회지
    • /
    • 제26권2호
    • /
    • pp.14-20
    • /
    • 2022
  • 본 연구에서는 메탄올 수증기 개질 반응을 이용하여 수소를 제조할 수 있는 촉매 반응 특성을 조사하였다. 메탄의 수증기 개질 반응시 자주 사용되는 니켈, 그리고 메탄올 합성 시 자주 사용되는 구리를 주 활성금속으로 사용하였으며, 지지체로는 다공성 및 열적 안정성이 우수하고, 높은 비표면적, 약한 루이스 산점과 염기성을 가지고 있는 하이드로탈사이트를 이용함으로서 높은 활성을 가지는 촉매와 그 특성에 대해서 파악하였다. 본 연구에서는 환원성이 높은 구리금속의 촉매에서 높은 반응성을 나타내었으며, 각각의 촉매에서는 함침량이 높아질수록 메탄올 전환율 및 높은 수소 선택도를 보여 주었다.

메탄올 수증기개질을 위한 ZrO2 펠트 기반 Cu/Zn 촉매 특성 연구 (Characteristics of ZrO2 Felt Supported Cu/Zn Catalyst for Methanol Steam Reforming)

  • 최은영
    • 한국수소및신에너지학회논문집
    • /
    • 제28권2호
    • /
    • pp.129-136
    • /
    • 2017
  • Characteristics of $ZrO_2$ felt supported Cu/Zn catalysts have been investigated for the production of hydrogen via methanol steam reforming. Cu and Zn in different weight percent were loaded using wet impregnation over $ZrO_2$ felt support. The catalysts were characterized with BET and FE-SEM. The performance of these synthesized catalysts were investigated at SCR=1.5, $GHSV=2000h^{-1}$, temperature=$300{\sim}400^{\circ}C$, and pressure=2.5~19.5 barA. The results showed that the $Cu^{32.5}Zn^{7.5}ZrO_2$ catalyst was most active in terms of methanol conversion and hydrogen production. The methanol conversion in steam reforming of methanol was 84.6% at 19.5 barA and furnace $400^{\circ}C$ over $Cu^{32.5}Zn^{7.5}ZrO_2$ catalyst. The catalysts prepared using $ZrO_2$ felt show higher reactor temperature than the pellet type catalyst at same furnace temperature.

CuO-ZnO-Al2O3 촉매에서의 메탄올 수증기 개질반응에 대한 반응속도와 유효성인자 (Kinetic and Effectiveness Factor for Methanol Steam Reforming over CuO-ZnO-Al2O3 Catalysts)

  • 임미숙;서숭혁
    • 한국수소및신에너지학회논문집
    • /
    • 제13권3호
    • /
    • pp.214-223
    • /
    • 2002
  • Kinetic and effectiveness factors for methanol steam reforming using commercial copper-containing catalysts in a plug flow reactor were investigated over the temperature ranges of $180-250^{\circ}C$ at atmospheric pressure. The selectivity of $CO_2$/$H_2$ was almost 100%, and CO products were not observed under reaction conditions employed in this work. It was indicated that $CO_2$ was directly produced and CO was formed via the reverse water gas shift reaction after methanol steam reforming. The intrinsic kinetics for such reactions were well described by the Langmuir-Hinshelwood model based on the dual-site mechanism. The six parameters in this model, including the activation energy of 103kJ/mol, were estimated from diffusion-free data. The significant effect of internal diffusion was observed for temperature higher than $230^{\circ}C$ or particle sizes larger than 0.36mm. In the diflusion-limited case, this model combined with internal effectiveness factors was also found to be good agreement with experimental data.

용액연소법으로 합성한 Ni/Ce0.9Gd0.1O2-x와 Cu/Ce0.9Gd0.1O2-x 촉매의 메탄올 수증기 개질 특성 연구 (A Study on the Characteristics of Ni/Ce0.9Gd0.1O2-x and Cu/Ce0.9Gd0.1O2-x Catalysts for Methanol Steam Reforming Synthesized by Solution Combustion Process)

  • 이정훈
    • 한국수소및신에너지학회논문집
    • /
    • 제30권3호
    • /
    • pp.209-219
    • /
    • 2019
  • Methanol is a liquid fuel which could also be produced from renewable energy sources and has appreciably high energy density. In this work, we investigated the application of $Ce_{0.9}Gd_{0.1}O_{2-x}$ supported Cu and Ni catalysts for hydrogen production via methanol steam reforming. Catalysts were synthesized by solution combustion synthesis. The prepared catalysts with various active materials and Cu loading amounts were tested in a reactor at $200-300^{\circ}C$, 0-5 barg range and steam to methanol molar ratio was 1.5. The catalytic properties of Cu and Ni were compared, and the catalytic performance was shown to depend on the amounts of metal loading and operating conditions such as reaction temperature and pressure.

수증기의 잠열을 이용한 메탄올 수증기 개질기의 특성 연구 (Study on the Characteristics of Methanol Steam Reformer Using Latent Heat of Steam)

  • 천욱래;안강섭;신현길
    • 한국수소및신에너지학회논문집
    • /
    • 제29권1호
    • /
    • pp.19-24
    • /
    • 2018
  • Fuel cells are used to generate electricity with a reformer. In particular, methanol has various advantages among the fuels for reformer. Methanol steam reformer devices can efficiently supply hydrogen to PEM fuel cell. This study investigated the optimal operation conditions of a methanol steam reforming process. For this purpose, aspen HYSYS was used for the optimization of reforming process. The optimal operating condition could be designed by setting independent variables such as temperature, pressure and steam to carbon ratio (SCR). The optimal temperature and steam to carbon ratio were $250-270^{\circ}C$ and 1.3-1.5, respectively. It is advantageous to operate at a pressure of 15-20 barg, considering the performance of the hydrogen purifier. In addition, a heat exchange network was designed to supply heat constantly to reformer through the latent heat of steam.

마이크로 연료전지용 수소개질기내 전달현상 특성 연구 (Transport Phenomena in a Steam Methanol Microreformer for Fuel Cell)

  • 서정세
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.3-8
    • /
    • 2008
  • Effect of external heating rate on the conversion efficiency for the steam reforming of methanol is investigated numerically considering both heat and mass transfer of the species in a packed bed microreactor. In a results from the numerical simulation, the conversion efficiency of methanol has been obtained for the external heating rate. The axial variation of mole fraction of methanol has been additionally presented for several cases of external heating rates. The results show that for the constant inlet temperature condition the conversion efficiency of methanol increases with external heating rate over the range of operating conditions.

  • PDF

촉매 지지용 다층 컵 구조를 이용한 메탄올 수증기 개질 반응 연구 (Methanol Steam Reforming Using Multilayer Cup Structure for Catalyst Support)

  • 지현진;이정훈;최은영;양성호
    • 한국수소및신에너지학회논문집
    • /
    • 제31권2호
    • /
    • pp.202-209
    • /
    • 2020
  • In methanol steam reforming, commercial catalysts in the form of pellets are mainly used, but there are limitations to directly apply them to underwater weapon systems that require shock resistance and heat transfer characteristics. In this study, to overcome this problem, a multi-layer cup structure (MLCS) was applied to support a pellet type catalyst. The characteristics of pellet catalyst supported by MLCS and the pellet catalyst supported by conventional structure (CS) were compared by the reforming experiment. In the case of MLCS, a high methanol conversion rate was shown in the temperature range 200 to 300℃ relative to the CS manufactured with the same catalyst weight as MLCS. CS shown similar characteristics to MLCS when it manufactured in the same volume as MLCS by adding an additional 67% of the catalyst. In conclusions, MLCS can not only reduce catalyst usage by improving heat transfer characteristics, but also support pellet catalyst in multiple layers, thus improving shock resistance characteristics.

수소 연료전지 추진 선박 적용을 위한 메탄올 수증기 개질 시스템 최적 운전점 연구 (A Study on Optimal Operation of Methanol Steam Reforming System for Hydrogen Fuel Cell Propulsion Ships)

  • 조희주;현수빈;정승교;지현진;최정호
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.733-742
    • /
    • 2022
  • Hydrogen fuel cell propulsion ships are emerging to respond to the recently strengthened carbon emission regulations in the international shipping sector. Methanol can be stored in a liquid state at normal pressure and temperature, and has the advantage of lower reforming temperature compared to other fuels. In this study, the optimal operating point of the methanol steam reforming system was derived by changing the Steam Carbon Ratio (SCR) from 0.10 to 3.00. Results showed that In terms of methanol conversion rate and hydrogen yield, the larger the SCR is the better, but in terms of system efficiency, it is most advantageous to operate at SCR 0.70 in Pressure Swing Adsorption (PSA) mode and SCR 0.80 in Pd membrane mode. Through this study, it was found that the optimal SCR in the reformer and the entire system including the reformer may be different, which indicates that the optimum operating point may be different depending on the change of the system configuration.

Performance of Cu-SiO2 Aerogel Catalyst in Methanol Steam Reforming: Modeling of hydrogen production using Response Surface Methodology and Artificial Neuron Networks

  • Taher Yousefi Amiri;Mahdi Maleki-Kakelar;Abbas Aghaeinejad-Meybodi
    • Korean Chemical Engineering Research
    • /
    • 제61권2호
    • /
    • pp.328-339
    • /
    • 2023
  • Methanol steam reforming (MSR) is a promising method for hydrogen supplying as a critical step in hydrogen fuel cell commercialization in mobile applications. Modelling and understanding of the reactor behavior is an attractive research field to develop an efficient reformer. Three-layer feed-forward artificial neural network (ANN) and Box-Behnken design (BBD) were used to modelling of MSR process using the Cu-SiO2 aerogel catalyst. Furthermore, impacts of the basic operational variables and their mutual interactions were studied. The results showed that the most affecting parameters were the reaction temperature (56%) and its quadratic term (20.5%). In addition, it was also found that the interaction between temperature and Steam/Methanol ratio is important on the MSR performance. These models precisely predict MSR performance and have great agreement with experimental results. However, on the basis of statistical criteria the ANN technique showed the greater modelling ability as compared with statistical BBD approach.

마이크로 채널 반응기에서 메탄올의 수증기 개질반응을 통한 수소 제조 (Hydrogen Production by Methanol Steam Reforming over Micro-channel Reactor)

  • 이진우;전혜정;홍성창
    • 청정기술
    • /
    • 제15권2호
    • /
    • pp.130-136
    • /
    • 2009
  • 상용촉매인 Johnson Matthey사 KATALCO 83-3 촉매를 이용하여 마이크로 채널 반응기 (micro-channel reactor: MCR) 형태에 따른 메탄올 수증기 개질반응을 통한 수소제조반응 특성 연구를 수행하였다. 반응온도 200${\sim}$300$^{\circ}C$, 공간속도 3,000${\sim}$10,000 $hr^{-1}$, 촉매 크기 0.05${\sim}$2.2 mm 조건을 갖는 고정층 반응기에서 반응활성 실험을 수행한 결과, 촉매 크기 0.35 mm에서 최적의 반응활성을 나타났다. 이 결과를 토대로 stacked bed, boat bed 등 마이크로 채널 반응기 형태에 따른 반응활성을 연구한 결과, stacked bed type 마이크로 채널 반응기가 더 좋은 반응활성을 가짐을 알 수 있었다.