• Title/Summary/Keyword: Methanol steam reforming

Search Result 40, Processing Time 0.034 seconds

Comparative Study of Nickel and Copper Catalysts Using Al2O3 and Hydrotalcite in Methanol Steam Reforming (메탄올 수증기 개질반응에서 알루미나 및 하이드로탈사이트를 이용한 니켈 및 구리 촉매 비교 연구)

  • Lee, Jae-hyeok;Jang, Seung Soo;Ahn, Ho-Geun
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.14-20
    • /
    • 2022
  • In this study, the catalytic reaction characteristics for producing hydrogen using methanol steam reforming were investigated. Nickel and copper are frequently used in steam reforming reaction and methanol synthesis, were used as main active metals. As a support, hydrotalcite has a high specific surface area, excellent porosity and thermal stability, and has weak Lewis acid sites and basic properties. Hydrotalcite was used to identify catalysts of methanol steam reforming with catalytic activity and their properties. In this research, high reactivity was shown in the catalyst of copper metal with high reducibility. And increasing of active metal loading showed the higher the methanol conversion and hydrogen selectivity.

Characteristics of ZrO2 Felt Supported Cu/Zn Catalyst for Methanol Steam Reforming (메탄올 수증기개질을 위한 ZrO2 펠트 기반 Cu/Zn 촉매 특성 연구)

  • CHOI, EUNYEONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.129-136
    • /
    • 2017
  • Characteristics of $ZrO_2$ felt supported Cu/Zn catalysts have been investigated for the production of hydrogen via methanol steam reforming. Cu and Zn in different weight percent were loaded using wet impregnation over $ZrO_2$ felt support. The catalysts were characterized with BET and FE-SEM. The performance of these synthesized catalysts were investigated at SCR=1.5, $GHSV=2000h^{-1}$, temperature=$300{\sim}400^{\circ}C$, and pressure=2.5~19.5 barA. The results showed that the $Cu^{32.5}Zn^{7.5}ZrO_2$ catalyst was most active in terms of methanol conversion and hydrogen production. The methanol conversion in steam reforming of methanol was 84.6% at 19.5 barA and furnace $400^{\circ}C$ over $Cu^{32.5}Zn^{7.5}ZrO_2$ catalyst. The catalysts prepared using $ZrO_2$ felt show higher reactor temperature than the pellet type catalyst at same furnace temperature.

Kinetic and Effectiveness Factor for Methanol Steam Reforming over CuO-ZnO-Al2O3 Catalysts (CuO-ZnO-Al2O3 촉매에서의 메탄올 수증기 개질반응에 대한 반응속도와 유효성인자)

  • Lim, Mee-Sook;Suh, Soong-Hyuck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.214-223
    • /
    • 2002
  • Kinetic and effectiveness factors for methanol steam reforming using commercial copper-containing catalysts in a plug flow reactor were investigated over the temperature ranges of $180-250^{\circ}C$ at atmospheric pressure. The selectivity of $CO_2$/$H_2$ was almost 100%, and CO products were not observed under reaction conditions employed in this work. It was indicated that $CO_2$ was directly produced and CO was formed via the reverse water gas shift reaction after methanol steam reforming. The intrinsic kinetics for such reactions were well described by the Langmuir-Hinshelwood model based on the dual-site mechanism. The six parameters in this model, including the activation energy of 103kJ/mol, were estimated from diffusion-free data. The significant effect of internal diffusion was observed for temperature higher than $230^{\circ}C$ or particle sizes larger than 0.36mm. In the diflusion-limited case, this model combined with internal effectiveness factors was also found to be good agreement with experimental data.

A Study on the Characteristics of Ni/Ce0.9Gd0.1O2-x and Cu/Ce0.9Gd0.1O2-x Catalysts for Methanol Steam Reforming Synthesized by Solution Combustion Process (용액연소법으로 합성한 Ni/Ce0.9Gd0.1O2-x와 Cu/Ce0.9Gd0.1O2-x 촉매의 메탄올 수증기 개질 특성 연구)

  • LEE, JUNGHUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.209-219
    • /
    • 2019
  • Methanol is a liquid fuel which could also be produced from renewable energy sources and has appreciably high energy density. In this work, we investigated the application of $Ce_{0.9}Gd_{0.1}O_{2-x}$ supported Cu and Ni catalysts for hydrogen production via methanol steam reforming. Catalysts were synthesized by solution combustion synthesis. The prepared catalysts with various active materials and Cu loading amounts were tested in a reactor at $200-300^{\circ}C$, 0-5 barg range and steam to methanol molar ratio was 1.5. The catalytic properties of Cu and Ni were compared, and the catalytic performance was shown to depend on the amounts of metal loading and operating conditions such as reaction temperature and pressure.

Study on the Characteristics of Methanol Steam Reformer Using Latent Heat of Steam (수증기의 잠열을 이용한 메탄올 수증기 개질기의 특성 연구)

  • CHEON, UKRAE;AHN, KANGSUB;SHIN, HYUNKHIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.19-24
    • /
    • 2018
  • Fuel cells are used to generate electricity with a reformer. In particular, methanol has various advantages among the fuels for reformer. Methanol steam reformer devices can efficiently supply hydrogen to PEM fuel cell. This study investigated the optimal operation conditions of a methanol steam reforming process. For this purpose, aspen HYSYS was used for the optimization of reforming process. The optimal operating condition could be designed by setting independent variables such as temperature, pressure and steam to carbon ratio (SCR). The optimal temperature and steam to carbon ratio were $250-270^{\circ}C$ and 1.3-1.5, respectively. It is advantageous to operate at a pressure of 15-20 barg, considering the performance of the hydrogen purifier. In addition, a heat exchange network was designed to supply heat constantly to reformer through the latent heat of steam.

Transport Phenomena in a Steam Methanol Microreformer for Fuel Cell (마이크로 연료전지용 수소개질기내 전달현상 특성 연구)

  • Suh, Jeong-Se
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.3-8
    • /
    • 2008
  • Effect of external heating rate on the conversion efficiency for the steam reforming of methanol is investigated numerically considering both heat and mass transfer of the species in a packed bed microreactor. In a results from the numerical simulation, the conversion efficiency of methanol has been obtained for the external heating rate. The axial variation of mole fraction of methanol has been additionally presented for several cases of external heating rates. The results show that for the constant inlet temperature condition the conversion efficiency of methanol increases with external heating rate over the range of operating conditions.

  • PDF

Methanol Steam Reforming Using Multilayer Cup Structure for Catalyst Support (촉매 지지용 다층 컵 구조를 이용한 메탄올 수증기 개질 반응 연구)

  • JI, HYUNJIN;LEE, JUNGHUN;CHOI, EUNYEONG;YANG, SUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.202-209
    • /
    • 2020
  • In methanol steam reforming, commercial catalysts in the form of pellets are mainly used, but there are limitations to directly apply them to underwater weapon systems that require shock resistance and heat transfer characteristics. In this study, to overcome this problem, a multi-layer cup structure (MLCS) was applied to support a pellet type catalyst. The characteristics of pellet catalyst supported by MLCS and the pellet catalyst supported by conventional structure (CS) were compared by the reforming experiment. In the case of MLCS, a high methanol conversion rate was shown in the temperature range 200 to 300℃ relative to the CS manufactured with the same catalyst weight as MLCS. CS shown similar characteristics to MLCS when it manufactured in the same volume as MLCS by adding an additional 67% of the catalyst. In conclusions, MLCS can not only reduce catalyst usage by improving heat transfer characteristics, but also support pellet catalyst in multiple layers, thus improving shock resistance characteristics.

A Study on Optimal Operation of Methanol Steam Reforming System for Hydrogen Fuel Cell Propulsion Ships (수소 연료전지 추진 선박 적용을 위한 메탄올 수증기 개질 시스템 최적 운전점 연구)

  • HEEJOO CHO;SOOBIN HYEON;SEUNGKYO JUNG;HYUNJIN JI;JUNGHO CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.733-742
    • /
    • 2022
  • Hydrogen fuel cell propulsion ships are emerging to respond to the recently strengthened carbon emission regulations in the international shipping sector. Methanol can be stored in a liquid state at normal pressure and temperature, and has the advantage of lower reforming temperature compared to other fuels. In this study, the optimal operating point of the methanol steam reforming system was derived by changing the Steam Carbon Ratio (SCR) from 0.10 to 3.00. Results showed that In terms of methanol conversion rate and hydrogen yield, the larger the SCR is the better, but in terms of system efficiency, it is most advantageous to operate at SCR 0.70 in Pressure Swing Adsorption (PSA) mode and SCR 0.80 in Pd membrane mode. Through this study, it was found that the optimal SCR in the reformer and the entire system including the reformer may be different, which indicates that the optimum operating point may be different depending on the change of the system configuration.

Performance of Cu-SiO2 Aerogel Catalyst in Methanol Steam Reforming: Modeling of hydrogen production using Response Surface Methodology and Artificial Neuron Networks

  • Taher Yousefi Amiri;Mahdi Maleki-Kakelar;Abbas Aghaeinejad-Meybodi
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.328-339
    • /
    • 2023
  • Methanol steam reforming (MSR) is a promising method for hydrogen supplying as a critical step in hydrogen fuel cell commercialization in mobile applications. Modelling and understanding of the reactor behavior is an attractive research field to develop an efficient reformer. Three-layer feed-forward artificial neural network (ANN) and Box-Behnken design (BBD) were used to modelling of MSR process using the Cu-SiO2 aerogel catalyst. Furthermore, impacts of the basic operational variables and their mutual interactions were studied. The results showed that the most affecting parameters were the reaction temperature (56%) and its quadratic term (20.5%). In addition, it was also found that the interaction between temperature and Steam/Methanol ratio is important on the MSR performance. These models precisely predict MSR performance and have great agreement with experimental results. However, on the basis of statistical criteria the ANN technique showed the greater modelling ability as compared with statistical BBD approach.

Hydrogen Production by Methanol Steam Reforming over Micro-channel Reactor (마이크로 채널 반응기에서 메탄올의 수증기 개질반응을 통한 수소 제조)

  • Lee, Jin-Woo;Jeon, Hye-Jeong;Hong, Sung-Chang
    • Clean Technology
    • /
    • v.15 no.2
    • /
    • pp.130-136
    • /
    • 2009
  • Commercial catalyst (Cu-Zn/$Al_2O_3$, Johnson Matthey Co., 83-3 Catalyst) was applied to the hydrogen production by steam reforming of methanol in the micro-channel reactor (MCR). The steam reforming of methanol was tested over Cu-Zn catalyst at temperatures in the range of 200 and 300$^{\circ}C$, the catalyst size of 0.05${\sim}$2.2 mm, the space velocity of 3,000${\sim}$10,000 $hr^{-1}$ in a fixed bed continuous flow reactor. The conversion of methanol and the yield $H_2$ preferred high temperatures and low space velocities, and had optimal results with the particle size of 0.35 mm. Based on the results from experiments with fixed bed reactor, two types of MCR, boat bed and stacked bed MCRs, were studied. The stacked bed type MCR showed better methanol conversion compared with the boat type one.