• Title/Summary/Keyword: Methanol ligand

Search Result 46, Processing Time 0.026 seconds

Transition Metal Catalysed Oxidation Reactions and Ligand Effects in Aprotic Solvents (전이금속 촉매작용의 산화반응과 리간드 효과)

  • Kim, Sang-Bock
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.585-590
    • /
    • 2003
  • Cobalt oxygen carrier complex N,N'-ethylenebis(3-methoxysalycylideneiminato)cobalt(II), Co(3MeOsalen) was prepared at $25{\circ}C$. UV and visible absorption spectra of the complex and hydrazobenzene were studied in non-aqueous solvent methanol in the range of wavelength 200-600 nm. The oxidation of hydrazobenzene by oxygen in non-aqueous solvent is catalysed by Co(3MeOsalen). In the presence of triphenylphosphine($PPh_3$), the rate decreases in methanol. This is presumably attributable to the coordination of $PPh_3$ to the Co(3MeOsalen), resulting in the catallytically inactive compound. The initial rates of the oxidation of hydrazobenzene with the ligand triphenylphosphine were measured by the theoretical values of the rates, Rate=$k_1+k_2K_1[P]/1+K_1[P]+K_1K_2[P]^2$. This fact would be a poorer σ-donor ligand than methanol.

Diaza-18-crown-6 Ethers Containing Partially-fluorinated Benzyl Sidearms: Effects of Covalently Bonded Fluorine on the Alkali Metal Complexation

  • Chi, Ki-Whan;Shim, Kwang-Taeg;Huh, Hwang;Lee, Uk;Park, Young-Ja
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.393-398
    • /
    • 2005
  • The stability constants for the diaza-18-crown-6 ethers 2-6 and alkali metal cations ($Na^+,\;K^+,\;Rb^+\;and\;Cs^+$) were determined using potentiometry in 95% methanol. For each metal ion the stability constants of the partiallyfluorinated ligands 3-6 were larger than that of the non-fluorinated ligand 2, which might reflect an interaction between fluorine atoms and alkali metal cations. The stability constant of the ligand 4 was larger than that of the ligand 5 for each metal cation tested. This finding was also supported by the results of cation-induced chemical shifts in $^1H-,\;^{19}F$-NMR and extraction experiment. The potentiometry and NMR results as well as the X-ray crystal structures revealed that the position and number of fluorine atoms in the benzyl side arms was crucial for the enhanced interaction between a ligand and an alkali metal.

Kinetics of Complexation of Alkali Earth Metal Ions with 18-Crown-6-Ether in Methanol

  • Yun, Sock-Sung;Kim, Seong-Heon;Yang, Joon-Mook;Choi, Ki-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.2
    • /
    • pp.155-158
    • /
    • 1989
  • The rates of complexation of the 18-C-6 (1,4,7,10,13,16-hexaoxacyclooctadecane) with $K^+,\;Ca^{2+},\;Sr^{2+},\;and\;Ba^{2+}$ in methanol solution have been determined at 25$^{\circ}C$ by a pressure-jump technique. The Eigen Winkler mechanism has been applied to interprete the kinetic data. The results suggest that the rate determining step of the complexation in methanol is the rearrangement of the ligand in the outer sphere ion-dipole pair to form a stable encapsulated complex of the metal ion by the crown ether.

Studies on the Complexes of Lanthanide ion with Multidentate Ligand (I). Determination of Thermodynamic Parameters with Solution Calorimetric Method in Nonaqueous Solvents (란탄족 원소의 여러자리 리간드 착물에 관한 연구 (제 1 보) 물아닌 용액에서 용액열량계에 의한 열역학적 함수결정)

  • Sam-Woo Kang;Won-Hae Koo;Soo-Min Lee;Chang Choo-Hwan;Moo-Yol Seo
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.588-595
    • /
    • 1989
  • Log K, ${\Delta}$H and ${\Delta}$S for the complexation of $La^{3+},\;Ce^{3+}$ and $Eu^{3+}$with various multidentate ligand containing crown ether, diaza crown ether and diamine ether have been determined in methanol and acetonitril solutions at $25^{\circ}C$ by solution calorimetric titration method. The greater stability constant of $La^{3+}$-15C5 than those of 18C6 diaza [2.2] in methanol are discussed in terms of the size of metal ion and the ligand cavity and of metal ion solvation. The stabilities of $Ce^{3+}$ and $La^{3+}$ ion complexes with a various multidentate ligand in acetonitril are in the order of (diamine ether)<18C6<15C5$Ce^{3+}$, $La^{3+}$ and $Eu^{3+}$-diaza [2.2] complexes in acetonitril are increased with the following order: $Eu^{3+}$ < $La^{3+}$ < $Ce^{3+}$, that is increasing order of the optimum size and of the charge density of metal ion.

  • PDF

Structure and Heme-Independent Peroxidase Activity of a Fully-Coordinated Mononuclear Mn(II) Complex with a Schiff-Base Tripodal Ligand Containing Three Imidazole Groups

  • Sarkar, Shuranjan;Moon, Do-Hyun;Lah, Myoung-Soo;Lee, Hong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3173-3179
    • /
    • 2010
  • New complex $[Mn(II)H_{1.5}L]_2[Mn(II)H_3L]_2(ClO_4)_5{\cdot}3H_2O$ (1), where $H_3L$ is tris {2-(4-imidazolyl)methyliminoethyl} amine (imtren), has been prepared by reacting manganese(II) perchlorate hexahydrate with the imtren ligand in methanol. X-ray crystallographic study revealed that the imtren ligand hexadentately binds to Mn(II) ion through the three Schiff-base imine N atoms and three imidazole N atoms with a distorted octahedral geometry, and the apical tertiary amine N atom of the ligand pseudo-coordinates to Mn(II), forming overall a pseudo-seven coordination environment. The hydrogen-bonds between imidazole and imidazolate of $[Mn(II)H_{1.5}L]^{0.5+}$ complex ions are extended to build a 2D puckered network with trigonal voids. $[Mn(II)H_3L]^{2+}$ complex ions constitutes another extended 2D puckered layer without hydrogen bonds. Two layers are wedged each other to constitute overall stack of the crystal. Peroxidase activity of complex 1 was examined by observing the oxidation of 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) with hydrogen peroxide in the presence of complex 1. Generation of $ABTS^{+{\cdot}}$ was observed by UV-vis and EPR spectroscopies, indicating that the complex 1, a fully-coordinated mononuclear Mn(II) complex with nitrogen-only ligand, has a heme-independent peroxidase activity.

Syntheses and Reactions of Iridium Complexes Containing Mixed Phosphine-Olefin Ligand: (3-(Diphenylphosphino)propyl)(3-butenyl)phenylphosphine

  • Young-ae W. Park;Devon W. Meek
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.524-528
    • /
    • 1995
  • The reaction of [IrCl(cod)]2 with ppol ligand, Ph2PCH2CH2CH2P(Ph)CH2CH2CH=CH2, in ethanol gives an iridium complex, whose structure is converted from an ionic form, [Ir(cod)(ppol)]Cl·2C2H5OH (1),in polar solvents (ethanol, methanol and acetonitrile), to a molecular form, [IrCl(cod)(ppol)], in non-polar solvents (benzene and toluene). The cationic complexes, [Ir(cod)(ppol)]AsF6·1/2C2H5OH and [Ir(cod)(ppol)]PF6·1/2CH3CN, were prepared to compare with the ionic form by 31P NMR spectroscopy. When carbon monoxide is introduced to 1, cod is replaced by CO to give the 5-coordinated complex, [IrCl(CO)(ppol)]. Hydrogenation of 1-octene was not successful in the presence of 1. In order to verify the reason for 1 not behaving as a good catalyst for hydrogenation, electrophilic reactions with HCl, I2 and HBF4·etherate were performed, which yielded the oxidative addition product, [IrHCl2(ppol)], the substitution product, [IrI(cod)(ppol)], and another cationic product, [Ir(cod)(ppol)]BF4, respectively. Thus, the iridium complex is not sufficiently basic to activate hydrogen atoms or the olefin of the ppol ligand.

Adsorption Characteristics of U ranium (VI) Ion on Cryptand Synthetic Resin Adsorbent

  • Kim, Hae-Jin
    • Journal of Integrative Natural Science
    • /
    • v.10 no.4
    • /
    • pp.225-231
    • /
    • 2017
  • Cryptand resins were synthesized by mixing 1-aza-18-crown-6 macrocyclic ligand with styrene divinylbenzene copolymer having 1%, 2%, 5%, and 10% crosslink by a substitution reaction. These synthetic resins were confirmed by chlorine content, elementary analysis, SEM, surface area, and IR-spectrum. As the results of the effects of pH, crosslink of synthetic resin, and dielectric constant of a solvent on uranium ion adsorption for resin adsorbent, the uranium ion showed high adsorption at pH 3 or over. Adsorption selectivity for the resin in methanol solvent was the order of uranium ($UO_2{^{2+}}$) > calcium ($Ca^{2+}$) > neodymium ($Nd^{3+}$) ion, adsorbability of the uranium ion was the crosslink in order of 1%, 2%, 5%, and 10% and it was increased with the lower dielectric constant.

Adsorption of Uranium (VI) Ion on 1-Aza-12-Crown-4 Synthetic Resin with Styrene Hazardous Material

  • Kim, Joon-Tae
    • Journal of Integrative Natural Science
    • /
    • v.6 no.2
    • /
    • pp.104-110
    • /
    • 2013
  • 1-Aza-12-crown-4 macrocyclic ligand was combined with styrene (2th petroleum in 4th class hazardous materials) divinylbenzene copolymer having 1%, 2%, 3%, and 6% crosslinks by a substitution reaction, in order to synthesize resin. These synthetic resins were confirmed by chlorine content, elementary analysis and IR-spectrum. As the results of the effects of pH, equilibrium arrival time, crosslink of synthetic resin, and dielectric constant of a solvent on uranium ion adsorption for resin adsorbent, the uranium ion showed high adsorption at pH 3 or over and adsorption equilibrium of uranium ion was about 2 hours. In addition, adsorption selectivity for the resin in methanol solvent was the order of uranium ($UO_2{^{2+}}$) > iron ($Fe^{3+}$) > lutetium ($Lu^{3+}$) ions, adsorbability of the uranium ion was in the crosslinks order of 1%, 2%, 3%, and 6% was increased with the lower dielectric constant.

A Novel Al-Bridged Trinuclear Iron(II) Bis(imino)pyridyl Complex with Catalytic Ethylene Polymerization Behavior

  • Long, Zerong;Li, Zhongquan;Ma, Ning;Wu, Biao
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2537-2543
    • /
    • 2011
  • A self-assembled Al-bridged diiminopyridine-based ligand (3) was synthesized and characterized by FT-IR, ESI-MS and NMR spectroscopy. Electron spectral titrations were performed to confirm the formation of a novel trinuclear bis(imino)pyridyl iron(II) complex (4) upon addition of $FeCl_2$ into Al-bridged ligand 3 in methanol solution. Simultaneously, a typical bis(imino)pyridine-iron(II) complex (2) was synthesized and fully characterized. The X-ray crystal study of the iron(II) complex 2 disclosed a five-coordinate, distorted square-pyramidal structure with the tridentate N^N^N ligand and chlorides. The optimal molecular structure of 4 was obtained by means of molecular mechanics, which showed that each iron atom in the complex 4 is surrounded by two chlorides, a tridentate N^N^N ligand and one oxygen atom, supporting considerations about the possibility of six-coordinate geometry from MMAO or the ethylene access. A comparison of 4 with the reference 2 revealed a remarkable decrease of the catalytic activity and MMAO consumption (activity up to $0.41{\times}10^3\;kg\;{mol_{Fe}}^{-1}h^{-1}bar^{-1}$, Al/Fe = 650 for 4 and $7.02{\times}10^3\;kg\;{mol_{Fe}}^{-1}h^{-1}bar^{-1}$, Al/Fe = 1600 for 2).