• Title/Summary/Keyword: Methane-air mixture

Search Result 90, Processing Time 0.028 seconds

A Study on the Development of Industrial Dryer using the Superadiabatic Combustion Phenomena (초단열 연소현상을 이용한 산업용 건조기 개발에 관한 연구)

  • Chae, J.O.;Hwang, J.W.;Han, J.H.;Hwang, H.J.;Jun, J.K.;Han, J.O.;Lee, J.S.;You, H.S.;Lee, H.C.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.168-174
    • /
    • 2000
  • This paper illustrates the validity of reciprocating type superadiabatic combustor as a industrial applicable dryer. After the investigations of inner and surface temperature distributions of combustor various with air-fuel(methane) ratio, mixture flow rate and reciprocating time, this combustor can be applied in industrial dryer at certain operating conditions. The results are as follows. 1) Higher equilivalence ratio emits more radiation heat flux at the censer chamber 2) Higher mixture flow rate makes more uniform temperature distribution. however, due to the heat transfer from censer chamber to porous media, the radiation beat flux is worse. 3) Longer reciprocating time emit more radiation heat flux. however, this case also makes temperature distribution wide

  • PDF

Large Eddy Simulation of a Lifted Methane/Air Flame using FGM-based Multi-Environment PDF Approach (FGM기반 Multi-Environment PDF 모델을 이용한 메탄/공기 부상화염장의 Large Eddy Simulation)

  • Kim, Namsu;Kim, Jaehyun;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.265-266
    • /
    • 2015
  • The multi-environment PDF model coupled with flamelet generated manifolds(FGM) has been developed for a large eddy simulation of turbulent partially premixed lifted flame. This approach has a capability to realistically account for the transport and evolution of probability density function for mixture fraction and progress variable with the manageable computational burden. Using the tabulated chemistry, it is possible to track radical distributions which is important to predict autoignition process with the vitiated coflow environment. Numerical results indicate that the present yields the good agreement with experimental data in terms of mixture fraction, temperature, and species mass fractions.

  • PDF

Combustion Characteristics of Stratified Mixture in a Constant Volume Combustion Chamber with Sub-chamber( I ) (부실식 정적연소실내 층상혼합기의 연소특성( I ))

  • Kim, B.S.;Kwon, C.H.;Ryu, J.I.;Ryu, J.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.65-75
    • /
    • 1995
  • The present study was investigated combustion characteristics of methane-air mixtures at stratified charge in a constant volume combustion chamber. The results indicated that even the vety lean mixture, which is normally not flammable in single chamber type, could be burned within. a comparatively short time by using sub-chamber with stratified charge method. And the lean inflammability limit of mixture in a main chamber was about ($\phi_m$cr=O.46, when the equivalence ratio of a sub-chamber was $\phi_s$= 1.0. Initial time of pressure increase and total burning times were decreased and maximum combustion pressure. was increased as the equivalence ratio of both sub and main chamber approached unity. Specifically, initial time of pressure increase and total burning times were greatly affected rather by. the equivalence ratio of sub-chamber than that of main chamber. The maximum combustion pressure was little affected if the total equivalence ratio lies in the same range.

  • PDF

Combustion Characteristics of Stratified Mixture in a Constant Volume Combustion Chamber with Sub-chamber (II) (부실식 정적연소실내 층상혼합기의 연소특성(II))

  • Kim, B.S.;Kwon, C.H.;Ryu, J.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.122-134
    • /
    • 1995
  • The present study was investigated combustion characteristics of methane-air mixtures at stratified charge in a constant volume combustion chamber. The main results obtained from this study can be summarized as follows. In case of ${\phi}_s=1.0$, total burning times greatly affected rather than initial time of pressure increase and maximum combustion pressure. In case of ${\phi}_t=1.0$, initial time of pressure increase and total burning times were affected considerably in comparison with the case of ${\phi}_s=1.0$. Also, even the very lean mixture which total equivalence ratio is ${\phi}_t=0.69$(${\phi}_s=1.0$, ${\phi}_m=0.65$), by changing configuration of the critical passage-hole and using a stratified mixture, it is possible to decrease substantially the initial time of pressure increase. total burning times and NOx concentration without deteriorating combustion characteristics such as maximum combustion pressure, rate of heat release etc. in comparison with the use of single chamber(in case of ${\phi}=1.0$) only. Specifically, our trends were revealed remarkably in the case of Type D which is reduced a flame contact area of sub-chamber side of the passage-hole.

  • PDF

Axisymmetric Simulation of Nonpremixed Counterflow Flames - Effects of Fuel Concentration on Flame Structure - (비예혼합 대향류 화염의 축대칭 모사 - 연료농도가 화염구조에 미치는 영향 -)

  • Park Woe-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.44-50
    • /
    • 2003
  • The axisymmetric methane-air counterflow flame was simulated to investigate changes in the flame structure due to the fuel concentration and to evaluate the numerical method. The global strain rates $a_g=20,\;60,\;90\;s^{-1}$ and the mole fractions of methane $x_m=20,\;50,\;80\%$ in the fuel stream were taken to be numerical parameters. The axisymmetric simulation was conducted by using the Fire Dynamics Simulator (FDS) which employed a mixture fraction combustion model, and the results were compared with those of OPPDIF, which is an one-dimensional flamelet code and includes detail chemical reactions. In all the cases tested, there was good agreement in the temperature and axial velocity profiles between the axisymmetric and one-dimensional simulations. It was shown that the flame thickness and peak flame temperature increase and the flame radius decreases as the fuel concentration increases.

  • PDF

Experimentally Investigation on Combustion Phenomena in Micro Combustor for the Application of Power MEMS (초소형 연소기에서의 연소 현상 실험적 연구)

  • 나한비;김세훈;최원영;권세진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.270-273
    • /
    • 2003
  • The characteristic of constant volume micro combustor was investigated experimentally. The shape of micro combustor was cylindrical and has row aspect ratio or has relatively large diameter compared with chamber height. Diameter and chamber height was varied to investigate the geometric effect of combustor on the flame propagation. Diameter of 15 mm and 7.5 mm was designed while chamber height was designed to be 1mm, 2mm, and 3mm. The effect of initial pressure was also investigated parametrically from 1bar to 3bar. The gas used in this study was stoichiometric mixture of methane and air. The maximum pressure achieved in down scaled combustors was lower than that of conventional combustor because heat loss to wall was dominant as expected. The maximum pressure responded favorably with the change of height of combustor and the initial pressure, the maximum pressure was also increased. The flame propagation was possible when the specific condition was satisfied. Although the quenching distance of stoichiometric mixture of CH4 and Air is 2.5 mm, the flame could propagate even under quenching distance as the initial pressure increased.

  • PDF

Numerical Study on Vortex Structures in a Two-dimensional Bluff-Body Burner in the Transitional Flow Regime

  • Kawahara, Hideo;Nishimura, Tatsuo
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.31-36
    • /
    • 2002
  • Vortical structures are investigated numerically for both cold and combusting flows from a two-dimensional bluff-body burner in the transitional flow regime from steady to unsteady state. The Reynolds number of the central fuel flow is varied from 10 to 230 at a fixed air Reynolds number of 400. The flame sheet model of infinite chemical reaction and unit Lewis number are assumed in the simulation. The temperature dependence of the viscosity and diffusivity of the gas mixture is also considered. The vortex shedding is observed depending on the fuel flow. For cold flow, four different types of vortical structure are identified. However, for combusting flow of methane-air system the vortical structures change significantly due to a large amount of heat release during the combustion process, in contract to cold flow.

  • PDF

Combustion Characteristics of Hydrogen by the Thermodynamic Properties Analysis

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.84-90
    • /
    • 2015
  • Hydrogen has some remarkably high values of the key properties for transport processes, such as kinematic viscosity, thermal conductivity and diffusion coefficient. Hydrogen, as an energy medium, has some distinct benefits for its high efficiency and convenience in storage, transportation and conversion. Hydrogen has much wider limits of flammability in air than methane, propane or gasoline and the minimum ignition energy is about an order of magnitude lower than for other combustibles. Statistical thermodynamics provides the relationships that we need in order to bridge this gap between the macro and the micro. Our most important application will involve the calculation of the thermodynamic properties of the ideal gas.

Characteristics of Preheated Air Combustion in a Laminar Premixed Flame (층류 예혼합 화염의 예열공기 연소특성)

  • Lee, Jong-Ho;Lee, Seung-Young;Hahn, Jae-Won;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.1039-1046
    • /
    • 2002
  • Co-flow axisymmetric laminar premixed flame of methane was used to study the influence of air temperature and $N_2$ addition on the flame structure, temperature field and emission characteristics. OH 2-D images and temperatures along the centerline were measured experimentally by PLIF and CARS techniques respectively to observe the influences of dilution and thermal effects of $N_2$ in the gas mixture. Also, the concentration of NOx was measured at each condition by gas analyser to see the suppression effect of N2 addition on NOx emissions. It was found that OH concentrations distribute widely as air temperature goes higher, while the effect of $N_2$ addition is not significant. But $N_2$ addition highly contributes to the flame front and NOx emissions which was argued to be due to the reduction of flame temperature. In accordance with experimental study, numerical simulation using CHEMKlN code was carried out to compare the temperature results with those acquired by CARS measurement, and we could find that there is good agreement between those results.

Study on Combustion Performance and Burning Velocity in a Micro Combustor (초소형 연소기에서 연소성능과 연소속도에 대한 연구)

  • Na Hanbee;Lee Dae Hoon;Kwon Sejin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.662-670
    • /
    • 2005
  • The effect of heat loss on combustion performance and burning velocity of micro combustors in various conditions were exploited experimentally. Three different gases were used, and various geometric matrixes were considered to figure out the phenomena of combustion in a micro combustor. The micro combustors used in this study were constant volume combustors and had cylindrical shape. Geometric parameter of combustor was defined as combustor height and diameter. The effect of height was exploited parametrically as 1mm, 2mm and 3 mm and the effect of diameter was parameterized to be 7.5 mm and 15 mm. Three different combustibles which were Stoichiometric mixtures of methane and air, hydrogen and air, and mixture of hydrogen and air with fuel stoichiometry of two were used. By pressure measurement and visualization of flame propagation, characteristic of flame propagation was obtained. Flame propagations which were synchronized with pressure change within combustor were analyzed. From the analysis of images obtained during the flame propagations, burning velocity at each location of flame was obtained. About $7\%$ decrease in burning velocity of $CH_4/Air$ stoichiometric mixture compared with previous a empirical result was observed, and we can conclude that it is acceptable to use empirical equations for laminar premixed flame burning velocity to micro combustions. Results presented in this paper will give fine tool for analysis and prediction of combustion process within micro combustors.