• Title/Summary/Keyword: Methane potential

Search Result 307, Processing Time 0.026 seconds

Laser methane detector-based quantification of methane emissions from indoor-fed Fogera dairy cows

  • Kobayashi, Nobuyuki;Hou, Fujiang;Tsunekawa, Atsushi;Yan, Tianhai;Tegegne, Firew;Tassew, Asaminew;Mekuriaw, Yeshambel;Mekuriaw, Shigdaf;Hunegnaw, Beyadglign;Mekonnen, Wondimeneh;Ichinohe, Toshiyoshi
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1415-1424
    • /
    • 2021
  • Objective: Portable laser methane detectors (LMDs) may be an economical means of estimating CH4 emissions from ruminants. We validated an LMD-based approach and then used that approach to evaluate CH4 emissions from indigenous dairy cows in a dryland area of Ethiopia. Methods: First, we validated our LMD-based approach in Simmental crossbred beef cattle (n = 2) housed in respiration chambers and fed either a high- or low-concentrate diet. From the results of the validation, we constructed an estimation equation to determine CH4 emissions from LMD CH4 concentrations. Next, we used our validated LMD approach to examine CH4 emissions in Fogera dairy cows grazed for 8 h/d (GG, n = 4), fed indoors on natural-grassland hay (CG1, n = 4), or fed indoors on Napier-grass (Pennisetum purpureum) hay (CG2, n = 4). All the cows were supplemented with concentrate feed. Results: The exhaled CH4 concentrations measured by LMD were linearly correlated with the CH4 emissions determined by infrared-absorption-based gas analyzer (r2 = 0.55). The estimation equation used to determine CH4 emissions (y, mg/min) from LMD CH4 concentrations (x, ppm m) was y = 0.4259x+38.61. Daily CH4 emissions of Fogera cows estimated by using the equation did not differ among the three groups; however, a numerically greater milk yield was obtained from the CG2 cows than from the GG cows, suggesting that Napier-grass hay might be better than natural-grassland hay for indoor feeding. The CG1 cows had higher CH4 emissions per feed intake than the other groups, without significant increases in milk yield and body-weight gain, suggesting that natural-grassland hay cannot be recommended for indoor-fed cows. Conclusion: These findings demonstrate the potential of using LMDs to valuate feeding regimens rapidly and economically for dairy cows in areas under financial constraint, while taking CH4 emissions into consideration.

Effect of Four Medicinal Plants on In Vitro Ruminal Fermentation and Methane Emission (약용식물 4종의 in vitro 반추위 발효 성상 및 메탄 저감에 대한 영향)

  • Kim, Hyun-Sang;Lee, Seong-Shin;Wi, Ji-Soo;Lee, Yoo-Kyoung
    • Korean Journal of Organic Agriculture
    • /
    • v.32 no.3
    • /
    • pp.289-298
    • /
    • 2024
  • The objective of this study was to the effect of four medicinal plants (Rheum palmatum, Pharbitidis semen, Reynoutria japonica, Tribulus semen) supplementation on methane reduction and ruminal fermentation in in vitro batch culture method. Each medicinal plant was supplemented 5% on a substrate basis in the bottle, then filled with buffered rumen fluid. Incubation was conducted for 24 hours in a shaking incubator (39℃, 120 rpm). The ruminal pH values were not significantly different between the control and treatment groups. However, the digestibility of the feed was significantly higher in the group supplemented with medicinal plants than control group. Methane production (mL/g of digested dry matter) and total gas production (mL) was significantly lower in the treatment group compared to the control group in Tribulus semen group. Total volatile fatty acids concentration were significantly higher in all treatment groups than control group, and acetate concentration was significantly higher in all treatment groups than control group except for Rheum palmatum group. Propionate concentration was significantly higher in all treatment groups than control group, while butyrate concentration was significantly higher in Rheum palmatum group than control group. Ammonia nitrogen concentration was significantly higher in all treatment groups than control group. In conclusion, the addition of medicinal plants did not negatively impact rumen fermentation, and the results indicate that Tribulus semen has potential as a feed additive for reducing methane emissions.

Effects of silage storage period of grass clippings on methane production by anaerobic digestion (잔디 예지물의 혐기소화에서 사일리지 저장기간이 메탄 생산에 미치는 영향)

  • Jin Yeo;Tae-Hee Kim;Chang-Gyu Kim;Seo-Yeong Lee;Young-Man Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.4
    • /
    • pp.13-28
    • /
    • 2023
  • This study assessed the biochemical methane potential (Bu-P) of three grass species-Poa pratensis (PP), Zoysia japonica (ZJ), and Agrostis stolonifera (AS). Bu-P values were determined as 0.330 Nm3/kg-VSadded for PP, 0.297 Nm3/kg-VSadded for ZJ, and 0.261 Nm3/kg-VSadded for AS. Notably, PP exhibited superior suitability for methane production. The investigation also examined the impact of silage storage duration on PP grass clippings, revealing a 19% decline in Bu-P from an initial value of 0.269 Nm3/kg-VSadded on day 0 to 0.217 Nm3/kg-VSadded on day 180. Throughout the storage period, there were significant increases in neutral detergent fiber (NDF), acid detergent fiber (ADF), and crude protein (CP) contents, rising from 67.59%, 39.68%, and 3.02% on day 0 to 77.12%, 54.65%, and 6.24% on day 180, respectively. These findings highlight the influence of storage duration on the anaerobic digestibility of PP grass clippings. To effectively utilize grass clippings as a renewable resource for methane production, further studies considering factors such as initial moisture content, pretreatment methods, and potential effects of residual pesticides are necessary to optimize anaerobic digestion efficiency for herbaceous biomass.

Estimation and Mapping of Methane Emissions from Rice Paddies in Korea: Analysis of Regional Differences and Characteristics (전국 논에서 발생하는 메탄 배출량의 산정 및 지도화: 지역 격차 및 특성 분석)

  • Choi, Sung-Won;Kim, Joon;Kang, Minseok;Lee, Seung Hoon;Kang, Namgoo;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.88-100
    • /
    • 2018
  • Methane emissions from rice paddies are the largest source of greenhouse gases in the agricultural sector, but there are significant regional differences depending on the surrounding conditions and cultivation practices. To visualize these differences and to analyze their causes and characteristics, the methane emissions from each administrative district in South Korea were calculated according to the IPCC guidelines using the data from the 2010 Agriculture, Forestry and Fisheries Census, and then the results were mapped by using the ArcGIS. The nationwide average of methane emissions per unit area was $380{\pm}74kg\;CH_4\;ha^{-1}\;yr^{-1}$. The western region showed a trend toward higher values than the eastern region. One of the major causes resulting in such regional differences was the $SF_o$ (scaling factor associated with the application of organic matter), where the number of cultivation days played an important role to either offset or deepen the differences. Comparison of our results against the actual methane emissions data observed by eddy covariance flux measurement in the three KoFlux rice paddy sites in Gimje, Haenam and Cheorwon showed some differences but encouraging results with a difference of 10 % or less depending on the sites and years. Using the updated GWP (global warming potential) value of 28, the national total methane emission in 2010 was estimated to be $8,742,000tons\;CO_2eq$ - 13% lower than that of the National Greenhouse Gas Inventory Report (i.e., $10,048,000tons\;CO_2eq$). The administrative districts-based map of methane emissions developed in this study can help identify the regional differences, and the analysis of their key controlling factors will provide important scientific basis for the practical policy makings for methane mitigation.

Effects of Magnetite(Fe3O4) as Electrical Conductor of Direct Interspecies Electron Transfer on Methane Yield of Food Wastewater (종간직접전자전달 전도체로서 Magnetite(Fe3O4)가 음폐수의 메탄생산에 미치는 영향)

  • Jun-Hyeong Lee;Tae-Bong Kim;Chang-Hyun Kim;Young-Man Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.15-26
    • /
    • 2023
  • Methane production by anaerobic digestion occurs through interspecies electron transfer (DIET), a synthetic metabolism between acetic and methanate bacteria through hydrolysis and acid production steps. In this study, to improve methane yield, the effect of addition of magnetite (Fe3O4), a conductor promoting DIET on methane production in food wastewater was investigated, and the effect on methane yield was assessed by methane potential (Bu) and maximum methane production rate [Rm(t0)] by the operation of batch type anaerobic reactor adding Fe3O4. The Bu and Rm(t0) of food wastewater without Fe3O4 were 0.496 Nm3/kg-VSadded and 38.24 mL/day, respectively. The t0 which reached to Rm appeared at 21.06 days during the operation of the anaerobic reactor. The Bu of food wastewater with Fe3O4 was 0.502, 0.498, 0.512, 0.510, 0.518, 0.523, 0.524, 0.540, and 0.549 Nm3/kg-VSadded in the treatment of 5, 10, 15, 20, 25, 30, 40, 70, and 100mM-Fe3O4, respectively, and the Bu significantly increased to 36.95% with the addition of magnetite in the addition of 15mM-Fe3O4. And, the addition of Fe3O4 shortened the duration to reach Rm from 21.06 days to the maximum of 14.67 days by the addition of Fe3O4. Therefore, the methane yield and production rate of food wastewater significantly improved with the addition of Fe3O4.

Dietary rambutan peel powder as a rumen modifier in beef cattle

  • Ampapon, Thiwakorn;Wanapat, Metha
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.763-769
    • /
    • 2020
  • Objective: The experiment was conducted to study the effect of rambutan (Nephelium lappaceum) fruit peel powder (RP) on feed consumption, digestibility of nutrients, ruminal fermentation dynamics and microbial population in Thai breed cattle. Methods: Four, 2-year old (250±15 kg) beef bull crossbreds (75% Brahman×25% local breed) were allotted to experimental treatments using a 4×4 Latin square design. Four dietary supplementation treatments were imposed; non-supplementation (control, T1); supplementation of RP fed at 2% of dry matter intake (DMI) (low, T2); supplementation of RP fed at 4% of DMI (medium, T3) and supplementation of RP fed at 6% of DMI (high, T4). All cattle were given a concentrate supplement at 1% of body weight while Napier grass was provided as a free choice. Results: The findings revealed that RP supplementation did not negatively affect (p>0.05) DMI of Napier grass, while RP intake and total DMI were the greatest in the RP supplementation at 4% and 6% DMI. Nevertheless, the nutrients (dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber) digestibilities were not changed in the RP supplementation groups. Rumen fermentation parameters especially those of total volatile fatty acids, acetate and butyrate were not significantly changed. However, the propionate concentration was remarkably increased (p<0.05) in the RP supplementation. Notably, the ratio of acetate to propionate, the number of protozoa, as well as the methane estimation were significantly reduced in the RP supplemented groups (4% and 6% of DMI), while the counts of bacteria was not altered. Conclusion: Supplementation of RP (4% of DMI) improved rumen propionate production, reduced protozoal population and methane estimation (p<0.05) without a negative effect on feed consumption and nutrients total tract digestibilities in beef cattle. Using dietary rambutan fruit peel powder has potential promise as a rumen regulator.

Characterization of Methanotrophic Communities in Soils from Regions with Different Environmental Settings (다양한 환경조건을 가진 토양의 메탄산화세균 군집 특성)

  • Kim, Tae-Gwan;Park, Hyun-Jung;Lee, Sang-Hyon;Kim, Pyeong-Wha;Moon, Kyung-Eun;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.152-156
    • /
    • 2012
  • Methanotrophic communities from freshwater wetland (FW), seawater wetland (SW), forest (FS), and landfill soils (LS) around Seoul of South Korea, were characterized using comparative sequence analyses of clone libraries. Proportions of Methylocaldum, Methlyococcus and Methylosinus were found to be greater in FW and SW, while Methylobacter and Methylomonas were more notable in FS and Methylocystis and Methylomicrobium more prominent in LS. Lag periods behind the initiation of methane oxidation significantly varied amongst the soils. Methane oxidation rates were greater in $FW{\geq}LS{\geq}SW>FS$ (p<0.05). Thus, the environmental setting is a significant factor influencing the communities and capabilities of methanotrophs.

Estimation of the methane generation rate constant using a large-scale respirometer at a landfill site

  • Park, Jin-Kyu;Tameda, Kazuo;Higuchi, Sotaro;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.339-346
    • /
    • 2017
  • The objective of this study is the evaluation of the performance of a large-scale respirometer (LSR) of 17.7 L in the determination of the methane generation rate constant (k) values. To achieve this objective, a comparison between anaerobic (GB21) and LSR tests was conducted. The data were modeled using a linear function, and the resulting correlation coefficient ($R^2$) of the linear regression is 0.91. This result shows that despite the aerobic conditions, the biodegradability values that were obtained from the LSR test produced results that are similar to those from the GB21 test. In this respect, the LSR test can be an indicator of the anaerobic biodegradability for landfill waste. In addition, the results show the high repeatability of the tests with an average coefficient of variance (CV) that is lower than 10%; furthermore, the CV for the LSR is lower than that of the GB21, which indicates that the LSR-test method could provide a better representation of waste samples. Therefore, the LSR method allows for both the prediction of the long-term biodegradation potential in a shorter length of time and the reduction of the sampling errors that are caused by the heterogeneity of waste samples. The k values are $0.156y^{-1}$ and $0.127y^{-1}$ for the cumulative biogas production (GB21) and the cumulative oxygen uptake for the LSR, respectively.

Membrane Diffuser Coupled Bioreactor for Methanotrophic Denitrification under Non-aerated Condition: Suggestion as a Post-denitrification Option

  • Lee, Kwanhyoung;Choi, Oh Kyung;Song, Ji Hyun;Lee, Jae Woo
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.75-81
    • /
    • 2014
  • Methanotrophic denitrification under a non-aerated condition (without external supply of oxygen or air) was investigated in a bioreactor coupled with a membrane diffuser. Batch experiment demonstrated that both methane consumption and nitrogen production rates were not high in the absence of oxygen, but most of the nitrate was reduced into $N_2$ with 88% recovery efficiency. The methane utilized for nitrate reduction was determined at 1.63 mmol $CH_4$/mmol $NO_3{^-}$-N, which was 2.6 times higher than the theoretical value. In spite of no oxygen supply, methanotrophic denitrification was well performed in the bioreactor, due to enhanced mass transfer of the methane by the membrane diffuser and utilization of oxygen remaining in the influent. The denitrification efficiency and specific denitrification rate were 47% and 1.69 mg $NO_3{^-}-N/g\;VSS{\cdot}hr$, respectively, which were slightly lower than for methanotrophic denitrification under an aerobic condition. The average concentration of total organic carbon in the effluent was as low as 2.45 mg/L, which indicates that it can be applicable as a post-denitrification method for the reclamation of secondary wastewater effluent. The dominant fatty acid methyl ester of mixed culture in the bioreactor was $C_{16:1{\omega}7c}$ and $C_{18:1{\omega}7c}$, which was predominantly found in type I and II methanotrophs, respectively. This study presents the potential of methanotrophic denitrification without externally excess oxygen supply as a post-denitrification option for various water treatment or reclamation.

Enhancement of Anaerobic Biodegradability using the Solubilized Sludge by the Cavitation process (Cavitation에 의해 가용화된 슬러지의 혐기성 생분해도 향상에 관한 연구)

  • Kim, Dongha;Lee, Jaegyu;Jung, Euitaek;Jeong, Hoyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • In order to investigate the effective pretreatment methods in WAS(=waste activated sludge) solubilization, the values of SCOD yield per unit SS (SCOD/gSS.hr) were compared. After the hydrodynamic cavitation with pH of 12.5, SCOD increased to 7800 mg/L, SS decreased to 45 % and the solubilization rate was 29 %. Combination of alkality (pH 12.5) and the cavitation seems to be the optimal condition for sludge solubilization. After the cavitational pretreatment, efficiencies of anaerobic digestion of the unfiltered sludge(the control), raw sludge and pretreated sludge were evaluated with BMP(=biochemical methane potential) tests. For evaluation of the biodegradability characteristics of pretreated sewage sludge, the methane production has been measured for 6 months. The methane production of pretreated sludge increased 1.4 times than that of untreated sludge. The result indicates that the cavitationally pretreated sludge was a better biodegradability substrate in anaerobic condition compared to raw sludge. It is obvious that cavitational pretreatment could enhance not only solubilization but also biodegradability of WAS. In conclusion, cavitational pretreatment of WAS to convert the particulate into soluble portion was shown to be effective in enhancing the digestibility of the WAS.