Steam reforming and catalytic reforming of $CH_4$ conversion to produce synthesis gas require both high temperatures and high pressure. Non-thermal plasma is considered to be a promising technology for the hydrogen rich gas production from methane. In this study, three phase AC GlidArc plasma system was employed to investigate the effects of gas composition, gas flow rate, catalyst reactor temperature and applied electric power on the $CH_4$ and $H_2$ yield and the product distribution. The studied system consisted of three electrode and it connected AC generate power system different voltages. In this study, air was used for the partial oxidation of methane. The results showed that increasing gas flow rate, catalyst reactor temperature, or electric power enhanced $CH_4$ conversion and $H_2$ concentration. The reference conditions were found at a $O_2$/C molar ratio of 0.45, a feed flow rate of 4.9 ${\ell}$/min, and input power of 1kW for the maximum conversions of $CH_4$ with a high selectivity of $H_2$ and a low reactor energy density.
KIER has been developed a compact and highly efficient fuel processor which is one of the key component of the residential PEM fuel cells system. The fuel processor uses methane steam reforming to convert natural gas to a mixture of water, hydrogen, carbon dioxide, carbon monoxide and unreacted methane. Then carbon monoxide is converted to carbon dioxide in water-gas-shift reactor and preferential oxidation reactor. A start-up time of the fuel processor is about 1h and CO concentration among the final product is maintained less than 5 vol. ppm. To achieve high thermal efficiency of 80% on a LHV basis, an optimal thermal network was designed. Internal heat exchange of the fuel processor is so efficient that the temperature of the reformed gas and the flue gas at the exit of the fuel processor remains less than $100^{\circ}C$. A compact design considering a mixing and distribution of the feed was applied to reduce the reactor volume. The current volume of the fuel processor is 17L with insulation.
Structure of edge flame established in a mixing layer, formed between two uniformly flowing pure $CH_4$ and pure $O_2$ streams, is numerically investigated by employing a detailed methane-oxidation mechanism. The numerical results exhibited the most outstanding distinction of using pure oxygen in the fuel-rich premixed-flame front, through which the carbon-containing compound is found to leak mainly in the form of CO instead of HC compounds, contrary to the rich $CH_4-air$ premixed flames in which $CH_4$ as well as $C_2H_m$ leakage can occur. Moreover, while passing through the rich premixed flame, a major route for CO production, in addition to the direct $CH_4$ decomposition, is found to be $C_2H_m$ compound formation followed by their decomposition into CO. Beyond the rich premixed flame front, CO is further oxidized into $CO_2$ in a broad diffusion-flame-like reaction zone located around moderately fuel-rich side of the stoichiometric mixture by the OH radical from the fuel-lean premixed-flame front. Since the secondary CO production through $C_2H_m$ decomposition has a relatively strong reaction intensity, an additional heat-release branch appears and the resulting heat-release profile can no longer be seen as a tribrachial structure.
Structure of edge flame established in a mixing layer, formed between two uniformly flowing pure $CH_4$ and pure $O_2$ streams, is numerically investigated by employing a detailed methane-oxidation mechanism. The numerical results exhibited the most outstanding distinction of using pure oxygen in the fuel-rich premixed-flame front, through which the carbon-containing compound is found to leak mainly in the form of CO instead of HC compounds, contrary to the rich $CH_4-air$ premixed flames in which $CH_4$ as well as $C_2H_m$ leakage can occur. Moreover, while passing through the rich premixed flame, a major route for CO production, in addition to the direct $CH_4$ decomposition, is found to be $C_2H_m$ compound formation followed by their decomposition into CO. Beyond the rich premixed flame front, CO is further oxidized into $CO_2$ in a broad diffusion-flame-like reaction zone located around moderately fuel-rich side of the stoichiometric mixture by the OH radical from the fuel-lean premixed-flame front. Since the secondary CO production through $C_2H_m$ decomposition has a relatively strong reaction intensity, an additional heat-release branch appears and the resulting heat-release profile can no longer be seen as a tribrachial structure.
메탄은 자연적인 발생원과 인위적인 발생원에 의해 배출되며 지구온난화를 야기하는 대표적인 온실가스이다. 메탄을 탄소원과 에너지원으로 이용하는 메탄산화세균은 메탄의 생물학적 산화에 중요한 역할을 한다. 메탄산화세균의 서식지는 매우 다양하며 메탄산화반응의 핵심 효소인 methane monooxygenases (MMOs)는 메탄뿐 아니라 다른 기질을 산화할 수 있는 기질특이성을 가지고 있다. 이러한 메탄산화세균의 특성으로 인해 생물학적 메탄 저감 기술과 생물정화기술 분야에서 메탄산화세균의 활용에 대한 연구가 활발히 진행되고 있다. 본 총설 논문에서는 메탄산화세균의 종류, MMOs의 특성과 메탄산화세균의 고농도 배양 기술에 관한 최근 정보를 정리하였다. 또한 메탄산화세균을 이용한 생물학적 메탄 저감 관련 실험실 규모와 매립지 현장에서의 기술 개발 현황 및 적용 결과를 소개하였다. 이러한 생물학적 메탄 저감 시스템에서 메탄산화세균의 군집 거동 특성도 고찰하였다. 마지막으로, 메탄산화세균을 활용한 생물공학기술의 혁신을 위해 필요한 과제로 대사활성이 우수하거나 신규 대사능력을 가진 메탄산화세균의 지속적인 탐색 연구, 고농도 세포 대량배양기술 개발 및 미생물 컨소시움(메탄산화세균과 비메탄산화세균의 컨소시움) 디자인 및 관리 기술 등이 필요함을 제안하였다.
고정층반응기에서 니켈이 치환된 하이드로탈사이트($Ni_3Mg_3Al_2(CO_3)(OH)_{{16}{\cdot}n}H_2O$ ; n=3$\sim$5)를 합성하고 여기에 세리아를 첨가 후 소성하여 얻은 촉매를 사용하여($Ce_xNi_3$-HTlc ; x=0.3$\sim$1.2) 메탄의 부분산화 반응실험을 수행하였다. 세리아가 첨가되지 않은 촉매는 반응 초기 활성이 세리가가 소량 첨가된 ($Ce_{0.3}Ni_3$-HTlc) 촉매보다 우수하였으나 장시간 반응에서는 차차 활성이 저하되었으나, $Ce_{0.3}Ni_3$-HTlc의 활성은 30시간까지 일정하게 유지 되었다. 세리아 함량이 많아 질수록 촉매 활성은 점차 저하되었으며, $Ce_{1.2}Ni_3$-HTlc 는 촉매활성이 매우 낮았다.
고정층반응기에서 여러 가지 전이금속으로 치환된 하이드로탈사이트($[M_xMg_{6-x}Al_2(OH)_{16}(CO_3)^{2-}]{\cdot}H_2O;$ M: 전이금속(Ni, Mn, Co, Cu, Zn) x: 전이금속 치환비($x=0.5{\sim}6$))를 합성하고 이를 소성한 후 메탄의 부분산화 반응에 사용하였다. 반응 시 도입되는 $CH_4/O_2$비는 2로 하고 $VHSV=120,000cm^3/g$ h, 온도를 $500^{\circ}C$ 부터 $50^{\circ}C$ 간격으로 하여 $800^{\circ}C$까지 수행하였다. 실험결과 다른 전이금속들 중에서 니켈로 치환된 촉매가 대체적으로 부분산화반응을 촉진시키는데 좋은 것으로 나타났으며, 실험 결과 니켈의 hydrotalcite 중의 치환비(x)에 따른 차이는 별로 없었다.
Characteristics of a plasma reactor for partial oxidation of methane, especially focused on the role and effectiveness of plasma chemistry, is investigated. Partial oxidation of methane is investigated using a rotating arc which is a three dimensional version of a typical glidingarc. The rotating arc has both the characteristics of equilibrium and non-equilibrium plasma. Non-equilibrium characteristics of the rotating gliding arc can be increased by rotating an elongated arc string attached at both the tip of inner electrode and the edge of outer electrode. In this way, plasma chemistry can be enhanced and hydrogen selectivity can reach almost 100% that is much higher than thermal equilibrium condition. As a result, the present study enables the strategic approach of the plasma reforming process by means of appropriate reactor design to maximize plasma effect and resulting in maximized reaction efficiency.
Two unidentified methanotrophic strains (MM-white and MM-red) secreting soluble methane monooxygenase (sMMO) involved in thrichloroethylene biodegradation have been isolated from mixed methanotrophic consortium (MM) around Taejon area. Subsequently four methanotrophic strains were isolated from MM and named according to their color; white (MS-white), yellow (MS-yellow), pink (MS-pink) and reddish brown (MS-rbrown). All strains except MS-yellow which can take glucose as well as methane, metabolized methane as a sole carbon source. They all showed symbiotic behavior when methane was used as the sole carbon source. Optimum conditions of cell growth for MM were pH of 6.8 - 7.2, temperature of 29 - 32$^{\circ}C$, and gas flow rate of 6 (for methane), 40 (for air), and 4 ml/min (for carbon dioxide). The sMMO activity was expressed as naphthalene oxidation rate (${\mu}$mol/ mg protein/ hr). The sMMO activity for MM grown in flask culture with 1 ${\mu}$M of CuSO4 was 36, while it was 61 without copper. The activity for MM grown in the fermentor without CuSO4 was 1077, but is was 197 after reaction with 5 ppm of TCE. The methanotrophs showed significantly high sMMO activity despite the presence of 1 ${\mu}$M of CuSO4, although most of other strains already known could not express sMMO activity under this condition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.