• Title/Summary/Keyword: Methane hydrate

Search Result 120, Processing Time 0.026 seconds

Preponderant Occurrence of sl natural methane hydrates: Spectroscopic analysis of crystalline structure transition (sI 천연 메탄하이드레이드의 존재 : 결정구조 변화의 분광학적 분석)

  • Yeon, Sun-Hwa;Seol, Ji-Woong;Lee, Huen
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.387-390
    • /
    • 2006
  • We report here that under strong attacksof external $CH_4$ guest molecules the sII and sH methane hydrates are structurally transformed to the crystalline me framework of sI, leading to favorable change of the lattice dimension of the host-guest networks. The High Power Decoupling $^{13}C$ NMR and Raman spectroscopies were used to identify structure transitions of the mixed $CH_4+C_2H_6$ hydrates (sIIl) and hydrocarbons (methylcyclohexane, isopentane) + $CH_4$ hydrates (sH). The resulting spectra indicate that most of the synthesized sII and sH hydrates were transformed to methane hydrate of sl under 110 bar and particularly the coexistence of sl with sII or sH appear according to the surrounding methane-rich gas conditions. The present findings might be expected to Provide rational evidences regarding the preponderant occurrence of naturally-occurring sI methane hydrates in marine sediments.

  • PDF

Experimental Study on Optimal Generation of Methane Hydrate (가스하이드레이트 생성조건 최적화에 관한 실험적 연구)

  • Yoon, Seok-Ho;Lee, Jung-Ho;Lee, Kong-Hoon;Park, Sang-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1317-1321
    • /
    • 2009
  • Natural gas liquefaction plant and LNG carrier needs large capital investment. Therefore a lot of small or middle scale natural gas fields aren't developed due to poor profitability. If natural gas is made to gas hydrate instead of liquefaction, developing small-scale natural gas field can be profitable because building cost of gas hydrate plant and carrier are economical. Because the process of making gas hydrate consumes much energy, the gas hydrate formation process has to be optimized for energy consumption. In this study, gas hydrate formation process was investigated experimentally. Experimental apparatus consists of reactor, pressure regulator, chiller, and magnetic stirrer. 99.95% methane was used to make gas hydrate. Tests were conducted at variable pressure and temperature condition.

  • PDF

A Comparative Analysis on characteristics and Manufacture of Methane/Natural Gas Hydrates (메탄/천연가스 하이드레이트의 제조 및 특성 비교 분석)

  • Lee Young-Chul;Cho Byoung-Hak;Baek Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.32-43
    • /
    • 2003
  • As this paper is observed the phase equilibrium diagram of mono- (methane) and multi-component(natural gas) hydrates, and the hydrate growth behavior is analysed and compared by the experiments during the reaction. The difference of mono and multi-component hydrates is an induction delay time and a plateau region. And the concentration of component of gases is changed during the reaction in multi-component hydrates and the concentration of components is changed during the decomposition of hydrate according to each decomposing rates of gases. At 6 MPa, 276.65 K and 600 rpm, the induction delay time of multi-component hydrate formation is observed shorter than that of mono-component hydrate formation because the hydrate nuclei of gases except methane form faster than those of methane. And the plateau region of mono-component hydrate is observed distinctly at 0.055 mole of $CH_4$/mole of water and that of multi-component hydrate is observed at 0.04 mole of $CH_4$/mole of water.

  • PDF

Fusion of 3D seismic exploration and seafloor geochemical survey for methane hydrate exploration (메탄 하이드레이트 탐사를 위한 3 차원 탄성파 탐사와 해저면 지구화학탐사의 융합 기술)

  • Nagakubo, Sadao;Kobayashi, Toshiaki;Fujii, Tetsuya;Inamori, Takao
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • The MH21 Research Consortium has conducted a high-resolution 3D seismic survey and a seafloor geochemical survey, to explore methane hydrate reservoirs in the eastern Nankai Trough, offshore Japan. Excellent geological information about shallow formations was obtained from the high-resolution 3D seismic survey, which was designed to image the shallow formations where methane hydrates exist. The information is useful in constructing a geological and geochemical model, and especially to understand the complex geology of seafloor, including geochemical manifestations and the structure of migration conduits for methane gas or methane-bearing fluid. By comparing methane seep sites observed by submersibles with seismic sections, some significant relationships between methane hydrate reservoirs, free gas accumulations below the seafloor, and seafloor manifestations are recognised. Bathymetric charts and seafloor reflection amplitude maps, constructed from seismic reflections from the seafloor, are also useful in understanding the relationships over a vast area. A new geochemical seafloor survey targeted by these maps is required. The relationships between methane hydrate reservoirs and seafloor manifestations are becoming clearer from interpretation of high-resolution 3D seismic data. The MH21 Research Consortium will continue to conduct seafloor geochemical surveys based on the geological and geochemical model constructed from high-resolution 3D seismic data analysis. In this paper, we introduce a basis for exploration of methane hydrate reservoirs in Japan by fusion of 3D seismic exploration and seafloor geochemical surveys.

Study of Methane Storage through Structure Transition of Gas Hydrate (가스하이드레이트 구조 변형을 통한 메탄 저장에 관한 연구)

  • Lee, Ju-Dong;Lee, Man-Sig;Kim, Young-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.54-57
    • /
    • 2006
  • Structure H formation experiments were conducted in a semi-batch stirred vessel using methane as the small guest substance and neohexane(NH), tert-butylmethylether(TBME) and methylcyclohexane(MCH) as the large molecule guest substance (LMGS). The results indicate that the rates of gas uptake and induction times are generally dependent on the magnitude of the driving force. When tert-butyl methyl ether is used as the LMGS rapid hydrate formation, much smaller induct ion time and rapid decomposition can be achieved. Liquid-liquid equilibrium (LLE) data for the above LMGS with water have been measured under atmospheric pressure at 275.5, 283.15K, and 298.15K. It was found that TBME is the most water soluble followed by NM and MCH. The solubility of water in the non-aqueous liquid was found to increase in the following order: MCH

  • PDF

Gas Hydrate Systems at Hydrate Ridge;Results from ODP Leg 204

  • Lee, Young-Joo;Kim, Ji-Hoon;Ryu, Byong-Jae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.531-533
    • /
    • 2007
  • We report and discuss molecular and isotopic properties of hydrate-bound gases from 55 samples and void gases from 494 samples collected during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge offshore Oregon. Gas hydrates appear to crystallize in sediments from two end-member gas sources (deep allochthonous and in situ) as mixtures of different proportions. In an area of high gas flux at the Southern Summit of the ridge (Sites 1248-1250), shallow (0-40 meters below the seafloor (mbsf)) gas hydrates are composed of mainly allochthonous mixed microbial and thermogenic methane and a small portion of thermogenic C2+ gases, which migrated vertically and laterally from as deep as 2-2.5 km depths. In contrast, deep (50-105 mbsf) gas hydrates at the Southern Summit (Sites 1248 and 1250) and on the flanks of the ridge (Sites 1244-1247) crystallize mainly from microbial methane and ethane generated dominantly in situ. A small contribution of allochthonous gas may also be present at sites where geologic and tectonic settings favor vertical gas migration from greater depth (e.g., Site 1244).

  • PDF

Study on methane hydrate production using depressurization method (감압법을 이용한 메탄 하이드레이트 생산에 대한 연구)

  • Park, Sung-Seek;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.1
    • /
    • pp.34-41
    • /
    • 2010
  • Gas hydrates are solid solutions when water molecules are linked through hydrogen bonding and create host lattice cavities that can enclose many kinds of guest(gas) molecules. There are plenty of methane(gas) hydrate in the earth and distributed widely at offshore and permafrost. Several schemes, to produce methane hydrates, have been studied. In this study, depressurization method has been utilized for the numerical model due to it's simplicity and effectiveness. IMPES method has been used for numerical analysis to get the saturation and velocity profile of each phase and pressure profile, velocity of dissociation front progress and the quantity of produced gas. The values calculated for the sample length of 10m, show that methane hydrates has been dissolved completely in approximately 223 minutes and the velocity of dissociation front progress is 3.95㎝ per minute. The volume ratio of the produced gas in the porous media is found to be about 50%. Analysing the saturation profile and the velocity profile from the numerical results, the permeability of each phase in porous media is considered to be the most important factor in the two phase flow propagation. Consequently, permeability strongly influences the productivity of gas in porous media for methane hydrates.

Phase Equilibrium of the Carbon Dioxide and Methane Hydrate in Silica Gel Pores and Thermodynamic Prediction (실리카겔 공극에서의 이산화탄소 및 메탄 하이드레이트 상평형 측정 및 열역학적 예측)

  • Kang, Seong-Pil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.477-480
    • /
    • 2007
  • Hydrate phase equilibrium for the binary CO2+water and CH4+water mixtures in silica gel pore of nominal 6, 30, and 100 nm were measured and compared with the cacluated results based on van der Waals and Platteeuw model. At a specific temperature three-phase hydrate-water-vapor (HLV) equilibrium curves for pore hydrates were shifted to the higher-pressure condition depending on pore sizes when compared with those of bulk hydrates. Notably, hydrate phase equilibria for the case of 100 nominal urn pore size were nealy identical with those of bulk hydrates. The activities of water in porous silica gels were modified to account for capillary effect, and the calculation results were generally in good agreement with the experimental data.

  • PDF

Formation and Dissociation Processes of Gas Hydrate Composed of Methane and Carbon Dioxide below Freezing

  • Hachikubo, Akihiro;Yamada, Koutarou;Miura, Taku;Hyakutake, Kinji;Abe, Kiyoshi;Shoji, Hitoshi
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.515-521
    • /
    • 2004
  • The processes of formation and dissociation of gas hydrates were investigated by monitoring pressure and temperature variations in a pressure cell in order to understand the kinetic behavior of gas hydrate and the controlling factors fur the phase transition of gas hydrate below freezing. Gas hydrates were made kom guest gases ($CH_4,\;CO_2$, and their mixed-gas) and fine ice powder. We found that formation and dissociation speeds of gas hydrates were not controlled by temperature and pressure conditions alone. The results of this study suggested that pressure levels at the formation of mixed-gas hydrate determine the transient equilibrium pressure itself.

Phase Equilibrium of the Carbon Dioxide and Methane Hydrate in Silica Gel Pores and Thermodynamic Prediction (실리카겔 공극에서의 이산화탄소 및 메탄 하이드레이트 상평형 측정 및 열역학적 예측)

  • Kang, Seong-Pil
    • New & Renewable Energy
    • /
    • v.3 no.2 s.10
    • /
    • pp.47-52
    • /
    • 2007
  • Hydrate phase equilibrium for the binary $CO_{2}$+water and $CH_{4}$+water mixtures in silica gel pore of nominal 6, 30, and 100 nm were measured and compared with the cacluated results based on van der Waals and Platteeuw model. At a specific temperature three-phase hydrate-water-vapor (HLV) equilibrium curves for pore hydrates were shifted to the higher-pressure condition depending on pore sizes when compared with those of bulk hydrates. Notably, hydrate phase equilibria for the case of 100 nominal nm pore size were nearly identical with those of bulk hydrates. The activities of water in porous silica gels were modified to account for capillary effect, and the calculation results were generally in good agreement with the experimental data.

  • PDF