• Title/Summary/Keyword: Methane emission

Search Result 387, Processing Time 0.024 seconds

Methane Oxidation Potentials of Rice-associated Plant Growth Promoting Methylobacterium Species

  • Kang, Yeongyeong;Walitang, Denver I.;Seshadri, Sundaram;Shin, Wan-Sik;Sa, Tongmin
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.2
    • /
    • pp.115-124
    • /
    • 2022
  • BACKGROUND: Methane is a major greenhouse gas attributed to global warming partly contributed by agricultural activities from ruminant fermentation and rice paddy fields. Methanotrophs are microorganisms that utilize methane. Their unique metabolic lifestyle is enabled by enzymes known as methane monooxygenases (MMOs) catalyzing the oxidation of methane to methanol. Rice absorbs, transports, and releases methane directly from soil water to its stems and the micropores and stomata of the plant epidermis. Methylobacterium species associated with rice are dependent on their host for metabolic substrates including methane. METHODS AND RESULTS: Methylobacterium spp. isolated from rice were evaluated for methane oxidation activities and screened for the presence of sMMO mmoC genes. Qualitatively, the soluble methane monooxygenase (sMMO) activities of the selected strains of Methylobacterium spp. were confirmed by the naphthalene oxidation assay. Quantitatively, the sMMO activity ranged from 41.3 to 159.4 nmol min-1 mg of protein-1. PCR-based amplification and sequencing confirmed the presence and identity of 314 bp size fragment of the mmoC gene showing over 97% similarity to the CBMB27 mmoC gene indicating that Methylobacterium strains belong to a similar group. CONCLUSION(S): Selected Methylobacterium spp. contained the sMMO mmoC gene and possessed methane oxidation activity. As the putative methane oxidizing strains were isolated from rice and have PGP properties, they could be used to simultaneously reduce paddy field methane emission and promote rice growth.

Hazard prediction of coal and gas outburst based on fisher discriminant analysis

  • Chen, Liang;Wang, Enyuan;Feng, Junjun;Wang, Xiaoran;Li, Xuelong
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.861-879
    • /
    • 2017
  • Coal and gas outburst is a serious dynamic disaster that occurs during coal mining and threatens the lives of coal miners. Currently, coal and gas outburst is commonly predicted using single indicator and its critical value. However, single indicator is unable to fully reflect all of the factors impacting outburst risk and has poor prediction accuracy. Therefore, a more accurate prediction method is necessary. In this work, we first analyzed on-site impacting factors and precursors of coal and gas outburst; then, we constructed a Fisher discriminant analysis (FDA) index system using the gas adsorption index of drilling cutting ${\Delta}h_2$, the drilling cutting weight S, the initial velocity of gas emission from borehole q, the thickness of soft coal h, and the maximum ratio of post-blasting gas emission peak to pre-blasting gas emission $B_{max}$; finally, we studied an FDA-based multiple indicators discriminant model of coal and gas outburst, and applied the discriminant model to predict coal and gas outburst. The results showed that the discriminant model has 100% prediction accuracy, even when some conventional indexes are lower than the warning criteria. The FDA method has a broad application prospects in coal and gas outburst prediction.

Biotechnology for the Mitigation of Methane Emission from Landfills (매립지의 메탄 배출 저감을 위한 생물공학기술)

  • Cho, Kyung-Suk;Ryu, Hee-Wook
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.293-305
    • /
    • 2009
  • Methane, as a greenhouse gas, is some 21~25 times more detrimental to the environmental than carbon dioxide. Landfills generally constitute the most important anthropogenic source, and methane emission from landfill was estimated as 35~73 Tg per year. Biological approaches using biocover (open system) and biofilter (closed system) can be a promising solution for older and/or smaller landfills where the methane production is too low for energy recovery or flaring and installation of a gas extraction system is inefficient. Methanotrophic bacteria, utilizing methane as a sole carbon and energy source, are responsible for the aerobic degradation (oxidation) of methane in the biological systems. Many bench-scale studies have demonstrated a high oxidation capacity in diverse filter bed materials such as soil, compost, earthworm cast and etc. Compost had been most often employed in the biological systems, and the methane oxidation rates in compost biocovers/boifilters ranged from 50 to $700\;g-CH_4\;m^{-2}\;d^{-1}$. Some preliminary field trials have showed the suitability of biocovers/biofilters for practical application and their satisfactory performance in mitigation methane emissions. Since the reduction of landfill methane emissions has been linked to carbon credits and trading schemes, the verified quantification of mitigated emissions through biocovers/biofilters is very important. Therefore, the assessment of in situ biocovers/biofilters performance should be standardized, and the reliable quantification methods of methane reduction is necessary.

Meta-analysis on Methane Mitigating Properties of Saponin-rich Sources in the Rumen: Influence of Addition Levels and Plant Sources

  • Jayanegara, Anuraga;Wina, Elizabeth;Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1426-1435
    • /
    • 2014
  • Saponins have been considered as promising natural substances for mitigating methane emissions from ruminants. However, studies reported that addition of saponin-rich sources often arrived at contrasting results, i.e. either it decreased methane or it did not. The aim of the present study was to assess ruminal methane emissions through a meta-analytical approach of integrating related studies from published papers which described various levels of different saponin-rich sources being added to ruminant feed. A database was constructed from published literature reporting the addition of saponin-rich sources at various levels and then monitoring ruminal methane emissions in vitro. Accordingly, levels of saponin-rich source additions as well as different saponin sources were specified in the database. Apart from methane, other related rumen fermentation parameters were also included in the database, i.e. organic matter digestibility, gas production, pH, ammonia concentration, short-chain fatty acid profiles and protozoal count. A total of 23 studies comprised of 89 data points met the inclusion criteria. The data obtained were subsequently subjected to a statistical meta-analysis based on mixed model methodology. Accordingly, different studies were treated as random effects whereas levels of saponin-rich source additions or different saponin sources were considered as fixed effects. Model statistics used were p-value and root mean square error. Results showed that an addition of increasing levels of a saponin-rich source decreased methane emission per unit of substrate incubated as well as per unit of total gas produced (p<0.05). There was a decrease in acetate proportion (linear pattern; p<0.001) and an increase in propionate proportion (linear pattern; p<0.001) with increasing levels of saponin. Log protozoal count decreased (p<0.05) at higher saponin levels. Comparing between different saponin-rich sources, all saponin sources, i.e. quillaja, tea and yucca saponins produced less methane per unit of total gas than that of control (p<0.05). Although numerically the order of effectiveness of saponin-rich sources in mitigating methane was yucca>tea>quillaja, statistically they did not differ each other. It can be concluded that methane mitigating properties of saponins in the rumen are level- and source-dependent.

Predicting the Methane Gas Generation Rate at Landfill Sites Using the Methane Gas Generation Rate Constant (k)

  • Chung, Jin-Do;Kim, Jung-Tae
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.116-124
    • /
    • 2008
  • In this study, the Tier 2 method recommended by the Intergovernmental Panel on Climate Change (IPCC) was used to predict the methane generation rate at two landfill sites, designated as Y and C for purposes of this study, in South Korea. Factors such as the average annual waste disposal, methane emissions ($L_0$) and methane gas generation rate constant (k) were estimated by analyses of waste and the historical data for the landfills. The value of k was estimated by field experiments and then the changes in the methane generation rate were predicted through the year 2050, based on the value of k. The Y landfill site, which was in operation until the year 2008, will generate a total of 17, 198.7 tons by the end of 2018, according to our estimations. At the C landfill site, which will not be closed until the end of 2011, the amount of methane gas generated in 2011 will be 3,316 tons and the total amount of gas generated by 2029 will be 61,200 tons. The total production rate of methane gas at the C landfill is higher than that of the Y landfill. This indicates that the capacity of a landfill site affects the production rate of methane gas. However, the interrelation between the generation rate of methane and the value of k is weak. In addition, the generation of methane gas does not cease even when the operations at a landfill site come to a close and the methane gas production rate is at its highest at end of the operating life of a landfill site.

Analysis of research trends in methane emissions from rice paddies in Korea

  • Choi, Eun-Jung;Lee, Jae-Han;Jeong, Hyun-Cheol;Kim, Su-Hun;Lim, Ji-Sun;Lee, Dong-Kyu;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.4
    • /
    • pp.463-476
    • /
    • 2017
  • Climate change is considered as the greatest threat to our future and descendants. The Korean government has set a target for 2030 to reduce emission of greenhouse gases (GHGs) by 37% from the business-as-usual levels which are projected to reach 851 million metric tons of $CO_2eq$ (Carbon dioxide equivalent). In Korea, GHGs emission from agriculture account for almost 3.1% of the total of anthropogenic GHGs. The GHGs emitted from agricultural land are largely classified into three types: carbon dioxide ($CO_2$), methane ($CH_4$), and nitrous oxide ($N_2O$). In Korea, rice paddies are one of the largest agricultural $CH_4$ sources. In order to analyze domestic research trends related to $CH_4$ emission from rice paddies, 93 academic publications including peer reviewed journals, books, working papers, reports, etc., published from 1995 to September 2017, were critically reviewed. The results were classified according to the research purposes. $CH_4$ characteristics and assessment were found to account for approximately 65.9% of the research trends, development of $CH_4$ emission factors for 9.5%, $CH_4$ emission reduction technology for 14.8%, and $CH_4$ emission modeling for 6.3%, etc. A number of research related to $CH_4$ emission characteristics and assessment have been studied in recent years, whereas further study on $CH_4$ emission factors are required to determine an accurate country-specific GHG emission from rice paddies. Future research should be directed toward both studies for reducing the release of $CH_4$ from rice paddies to the atmosphere and the understanding of the major controlling factors affecting $CH_4$ emission.

Reduction of Odor Emission from Swine Excreta using Silver Nano Colloid (은 나노 콜로이드를 이용한 돼지분뇨의 악취 저감 효과)

  • Kim, Koo-Pil;Choi, Young-Soo;Oh, Kwang-Hyun;Koo, Kyung-Bon;Suh, Sang-Ryong;Yoo, Soo-Nam;Lee, Kyeong-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.342-347
    • /
    • 2011
  • The effect of SNC(silver nano colloid) on the emission reduction of odors such as ammonia ($NH_3$), hydrogen sulfide ($H_2S$), and methane ($CH_4$) from swine excreta was studied. Silver has been used as an universal antibiotic substance and can reduce the emission of some gases by sterilizing action. Therefore, an apparatus which produces SNC was developed and was conducted its performance test. Also, the SNC made by the apparatus was applied to swine excreta sampled from a piggery in oder to find the effect on the reduction of odor emission. An electrolysis apparatus was developed to produce SNC and its capacity was 0.024 ppm/$hr{\cdot}L$. The effects of SNC on the reduction of odor emission from swine excreta were tested for bad smell gases of ammonia ($NH_3$), hydrogen sulfide ($H_2S$) and methane ($CH_4$). For ammonia gas, factorial experiments were conducted to find the effects of concentration and application rate of SNC. The test results for the different concentrations of 20 ppm, 50 ppm, and 100 ppm showed that the more concentration of SNC was increased, the more emission reduction of ammonia gas increased. From the test results about the effect of application rate, the more SNC was applied, the more emission reduction of $NH_3$ increased. In order to reduce the concentration of $NH_3$ below 5 ppm, SNC of 50 ppm is recommended to be applied at an interval of 6 hours, and is mixed with swine excreta in the volumetric ratio of 4:1. For hydrogen sulfide gas, the concentration was decreased as time went by and was reduced rapidly in the first stage of the tests for all applied concentrations of SNC (20 ppm, 50 ppm, and 100 ppm). Especially, when 100 ml of SNC with 100 ppm was applied, emission of hydrogen sulfide gas was reduced rapidly during early 4 hours after the application of SNC. And, concentration of hydrogen sulfide gas was maintained below 20 ppm after 12 hours. For methane gas, t-test showed that there was no significance on the effect of its application for all applied concentrations of SNC. Therefore, it was concluded that the application of SNC on swine excreta had no effect on the emission reduction of $CH_4$.

Comparison of Solid Waste Stabilization and Methane Emission from Anaerobic and Semi-Aerobic Landfills Operated in Tropical Condition

  • Sutthasil, Noppharit;Chiemchaisri, Chart;Chiemchaisri, Wilai;Wangyao, Komsilp;Towprayoon, Sirintornthep;Endo, Kazuto;Yamada, Masato
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.261-268
    • /
    • 2014
  • Leachate quality and methane emission from pilot-scale lysimeters operated under semi-aerobic and anaerobic conditions were monitored for 650 days. Two semi-aerobic lysimeters were filled with un-compacted and compacted municipal solid wastes whereas two anaerobic lysimeters containing compacted wastes were operated with leachate storage at 50% and 100% of waste height, respectively. Despite having high moisture in wastes and operating under tropical rainfall events, leachate stabilization in semi-aerobic lysimeters took place much faster resulting in BOD reduction by 90% within 60 days, significantly shorter than 180-210 days observed in anaerobic lysimeters. Nitrogen concentration in leachate from semi-aerobic lysimeter could be reduced by 90%. In term of gas emission, semi-aerobic lysimeter with un-compacted wastes had much lower methane emission rate of $2.8g/m^2/day$ compare to anaerobic lysimeters ($62.6g/m^2/day$) through seasonal fluctuation was observed. Nevertheless, semi-aerobic lysimeter with waste compaction has similar performance to anaerobic lysimeter.

Prediction of methane emission from sheep based on data measured in vivo from open-circuit respiratory studies

  • Ma, Tao;Deng, Kaidong;Diao, Qiyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1389-1396
    • /
    • 2019
  • Objective: The current study analysed the relationships between methane ($CH_4$) output from animal and dietary factors. Methods: The dataset was obtained from 159 Dorper${\times}$thin-tailed Han lambs from our seven studies, and $CH_4$ production and energy metabolism data were measured in vivo by an opencircuit respiratory method. All lambs were confined indoors and fed pelleted diet during the whole experimental period in all studies. Data from two-thirds of lambs were used to develop linear and multiple regressions to describe the relationship between $CH_4$ emission and dietary variables, and data from the remaining one third of lambs were used to validate the established models. Results: $CH_4$ emission (g/d) was positively related to dry matter intake (DMI) and gross energy intake (GEI) (p<0.001). $CH_4$ energy/GEI was negatively related to metabolizable energy/gross energy and metabolizable energy/digestible energy (p<0.001). Using DMI to predict $CH_4$ emission (g/d) resulted in a coefficient of determination ($R^2$) of 0.80. Using GEI, digestible energy intake, and metabolizable energy intake predict $CH_4$ energy/GEI resulted in a $R^2$ of 0.92. Conclusion: the prediction equations established in the current study are useful to develop appropriate feeding and management strategies to mitigate $CH_4$ emissions from sheep.

A Study on Emission Charncteristics and EGR Application of Blending Fuels with Biodiesel Fuel and Oxygenate Component in a D.I. Diesel Engine (직접분사식 디젤기관에서 바이오디젤유와 함산소성분 혼합연료 적용시 배기배출물 특성 및 EGR의 적용 연구)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.43-48
    • /
    • 2008
  • The exhaust emissions of diesel engine are recognized as a major cause influencing environment strongly. In this study, the possibility of biodiesel fuel and oxygenated fuel(dimethoxy methane; DMM) was investigated as an alternative fuel for a naturally aspirated direct injection diesel engine. The smoke emission of blending fuel(biodiesel fuel 90vol-%+DMM 10vol-%) was reduced approximately 70% at 2500rpm, full load, in comparison with the diesel fuel. But, power, torque and brake specific energy consumption showed no significant differences. But, NOx emission of biodiesel fuel and DMM blended fuel increased compared with commercial diesel fuel due to the oxygen component in the fuel. It was needed a NOx reduction counterplan that EGR method was used as a countermeasure for NOx reduction. It was found that simultaneous reduction of smoke and NOx emission was achieved with BDF(95 vol-%) and DMM(5 vol-%) blended fuel and cooled EGR method(15%).