• 제목/요약/키워드: Methane Yield

검색결과 223건 처리시간 0.027초

Influence of dietary organic trace minerals on enteric methane emissions and rumen microbiota of heat-stressed dairy steers

  • A-Rang Son;Mahfuzul Islam;Seon-Ho Kim;Sung-Sill Lee;Sang-Suk Lee
    • Journal of Animal Science and Technology
    • /
    • 제65권1호
    • /
    • pp.132-148
    • /
    • 2023
  • Ruminants are the main contributors to methane (CH4), a greenhouse gas emitted by livestock, which leads to global warming. In addition, animals experience heat stress (HS) when exposed to high ambient temperatures. Organic trace minerals are commonly used to prevent the adverse effects of HS in ruminants; however, little is known about the role of these minerals in reducing enteric methane emissions. Hence, this study aimed to investigate the influence of dietary organic trace minerals on rumen fermentation characteristics, enteric methane emissions, and the composition of rumen bacteria and methanogens in heat-stressed dairy steers. Holstein (n=3) and Jersey (n=3) steers were kept separately within a 3×3 Latin square design, and the animals were exposed to HS conditions (Temperature-Humidity Index [THI], 82.79 ± 1.10). For each experiment, the treatments included a Control (Con) consisting of only basal total mixed rations (TMR), National Research Council (NRC) recommended mineral supplementation group (NM; TMR + [Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm]/kg dry matter), and higher concentration of mineral supplementation group (HM; basal TMR + [Se 3.5 ppm + Zn 350 ppm + Cu 28 ppm]/kg dry matter). Higher concentrations of trace mineral supplementation had no influence on methane emissions and rumen bacterial and methanogen communities regardless of breed (p > 0.05). Holstein steers had higher ruminal pH and lower total volatile fatty acid (VFA) concentrations than Jersey steers (p < 0.05). Methane production (g/d) and yield (g/kg dry matter intake) were higher in Jersey steers than in Holstein steers (p < 0.05). The relative abundances of Methanosarcina and Methanobrevibacter olleyae were significantly higher in Holstein steers than in Jersey steers (p < 0.05). Overall, dietary organic trace minerals have no influence on enteric methane emissions in heat-stressed dairy steers; however, breed can influence it through selective alteration of the rumen methanogen community.

Exploring indicators of genetic selection using the sniffer method to reduce methane emissions from Holstein cows

  • Yoshinobu Uemoto;Tomohisa Tomaru;Masahiro Masuda;Kota Uchisawa;Kenji Hashiba;Yuki Nishikawa;Kohei Suzuki;Takatoshi Kojima;Tomoyuki Suzuki;Fuminori Terada
    • Animal Bioscience
    • /
    • 제37권2호
    • /
    • pp.173-183
    • /
    • 2024
  • Objective: This study aimed to evaluate whether the methane (CH4) to carbon dioxide (CO2) ratio (CH4/CO2) and methane-related traits obtained by the sniffer method can be used as indicators for genetic selection of Holstein cows with lower CH4 emissions. Methods: The sniffer method was used to simultaneously measure the concentrations of CH4 and CO2 during milking in each milking box of the automatic milking system to obtain CH4/CO2. Methane-related traits, which included CH4 emissions, CH4 per energy-corrected milk, methane conversion factor (MCF), and residual CH4, were calculated. First, we investigated the impact of the model with and without body weight (BW) on the lactation stage and parity for predicting methane-related traits using a first on-farm dataset (Farm 1; 400 records for 74 Holstein cows). Second, we estimated the genetic parameters for CH4/CO2 and methane-related traits using a second on-farm dataset (Farm 2; 520 records for 182 Holstein cows). Third, we compared the repeatability and environmental effects on these traits in both farm datasets. Results: The data from Farm 1 revealed that MCF can be reliably evaluated during the lactation stage and parity, even when BW is excluded from the model. Farm 2 data revealed low heritability and moderate repeatability for CH4/CO2 (0.12 and 0.46, respectively) and MCF (0.13 and 0.38, respectively). In addition, the estimated genetic correlation of milk yield with CH4/CO2 was low (0.07) and that with MCF was moderate (-0.53). The on-farm data indicated that CH4/CO2 and MCF could be evaluated consistently during the lactation stage and parity with moderate repeatability on both farms. Conclusion: This study demonstrated the on-farm applicability of the sniffer method for selecting cows with low CH4 emissions.

CHARACTERISTICS OF BIOHYDROGEN PRODUCTION AND MICROBIAL COMMUNITY AS A FUNCTION OF SUBSTRATE CONCENTRATION

  • Youn, Jong-Ho;Shin, Hang-Sik
    • Environmental Engineering Research
    • /
    • 제10권1호
    • /
    • pp.7-14
    • /
    • 2005
  • The feasibility of hydrogen production with a raw seed sludge through direct acclimation of feedstock was investigated at acidogenic stage, and methane was harvested at followed methanogenic stage in an anaerobic two-stage process. Hydrogen content was higher than 57% at all tested organic loading rates (OLRs) and the yield of hydrogen ranged from 1.5 to 2.4 mol H2/mol hexose consumed and peaked at 6 gVSl-1day-1. Normal butyrate and acetate were main volatile fatty acids (VFAs), whereas the concentration of propionate was insignificant. The hydrogen-producing bacteria, Clostridium thermosaccharolyticum, was detected with strong intensity at all tested organic loading rates (OLRs) by denaturing gradient gel electrophoresis (DGGE) of the polymerase chain reaction (PCR) analysis. From COD balance in the process, the fraction of the feed-COD converted to the hydrogen-COD at acidogenic stage ranged from 7.9% to 9.3% and peaked at 6 gVSl-1day-1, whereas the fraction of feed-COD converted to the methane-COD at methanogenic stage ranged from 66.2% to 72.3% and peaked at 3 gVSl-1day-1.

Suppression of Methane Emission from Rice Paddy Soils with Fly ash Amendment

  • Ali, Muhammad Aslam;Oh, Ju-Hwan;Kim, Pil-Joo
    • 한국환경농학회지
    • /
    • 제26권2호
    • /
    • pp.141-148
    • /
    • 2007
  • Fly ash, a by-product of the coal-burning industry, and a potential source of ferro-alumino-silicate minerals, which contains high amount of ferric oxide and manganese oxide (electron acceptors), was selected as soil amendment for reducing methane $(CH_4)$ emission during rice cultivation. The fly ash was applied into potted soils at the rate of 0, 2, 10, and 20 Mg $ha^{-1}$ before rice transplanting. $CH_4$ flux from the potted soil with rice plants was measured along with soil Eh and floodwater pH during the cropping season. $CH_4$ emission rates measured by closed chamber method decreased gradually with the increasing levels of fly ash applied but rice yield significantly increased up to 10 Mg $ha^{-1}$ application level of the amendment. At this amendment level, total seasonal $CH_4$ emission was decreased by 20% along with 17% rice grain yield increment over the control. The decrease in total $CH_4$ emission may be attributed due to suppression of $CH_4$ production by the high content of active and free iron, and manganese oxides, which acted as oxidizing agents as well as electron acceptors. In conclusion fly ash could be considered as a feasible soil amendment for reducing total seasonal $CH_4$ emissions as well as maintaining higher grain yield potential under optimum soil nutrients balance condition.

콩의 MSM (Methyl Sulfonyl Methane) 처리 방법에 관한 연구 (Studies on the MSM (Methyl Sulfonyl Methane) Treatment Method of Soybeans)

  • 채세은;오승가;조영손;심두보;윤동경;전승호
    • 한국작물학회지
    • /
    • 제69권1호
    • /
    • pp.25-33
    • /
    • 2024
  • 본 연구는 콩 재배시 최적 MSM 농도설정을 위한 MSM 처리 방법에 따른 콩의 생육, 수량 및 품위 특성을 알아보았다. 1. 2022년 생육 특성 조사에서는 처리 농도가 50%~200%로 증가함에 따라 생육 특성인 초장, 경태 및 분지수가 증가하는 경향을 보였고, 이에 수량구성요소 및 수량에서도 같은 경향으로 농도가 가장 높았던 기비+추비3회 200% 처리구에서 협수가 가장 많아, 수량 또한 355 kg·10a-1로 가장 많았다. 2. MSM 처리 농도 200% 이상의 최적 농도설정을 위한 연구에서의 생육 특성은 초장 및 분지수에서 400% > 200% > 800% 경향이 나타났으며, 기비+추비3회 400% 처리구에서 각각 106.7 cm, 6개로 가장 길고, 많았다. 3. 종실 품위에서도 기비+추비3회 400% 처리구가 종실 직경 6.7 mm 이상의 비율이 66.9%로 가장 높게 나타났다. 4. 수량구성요소인 협수, 입수 및 백립중에서도 같은 경향으로 기비+추비3회 400% 처리구에서 각각 90.0개, 1.95개 23.0g으로 가장 많고, 무거웠으며 종실 수량 또한 374 kg·10a-1로 가장 많아 무처리구 대비 최대 23.4% 증수하였다. 5. 따라서, 콩의 고품질 안정생산 재배를 위한 MSM 최적 처리 방법으로는 400% 농도로 기비 후, 수확 전 30일 간격으로 추비 3회 처리하는 것이 가장 유리할 것으로 판단된다.

실리카 담지 12-몰리브도인산 촉매상에서의 아산화질소에 의한 메탄의 부분산화반응 (The Partial Oxidation of Methane by Nitrous Oxide over Silica-Supported 12-Molybdophosphoric Acid)

  • 홍성수;우희철;주창식;이근대
    • 공업화학
    • /
    • 제5권1호
    • /
    • pp.139-148
    • /
    • 1994
  • 실리카에 담지된 헤테로폴리산 촉매에서 아산화질소에 의한 메탄의 부분산화반응을 연구하였다. 여러 가지의 반응조건, 즉 반응온도, 반응물의 분압, 접촉시간, 촉매의 담지량 및 전처리온도 등이 전환율이나 생성물의 선택도 및 속도론에 미치는 영향이 연구되었다. 20 wt%로 담지된 촉매가 전환율과 포름알데히드의 수율에 있어서 가장 높은 값을 보여 주었다. 메탄은 전환반응에서의 속도식을 구한 결과, 메탄에 대해서는 1차식을 보여 주었고, 아산화질소에 대한 반응차수는 약 0.4였다. 또한 전체반응의 겉보기 활성화에너지는 30.78 kcal/mole 이었다. 반응물 중에 첨가된 소량의 사염화탄소는 메탄의 산화반응에서 실리카 담지 HPMo 촉매의 활성을 증가시키는 반면에, 반응물에 첨가된 물은 오히려 활성을 감소시키는 것을 볼 수 있었다.

  • PDF

Maximizing biogas production by pretreatment and by optimizing the mixture ratio of co-digestion with organic wastes

  • Lee, Beom;Park, Jun-Gyu;Shin, Won-Beom;Kim, Beom-Soo;Byun, Byoung-su;Jun, Hang-Bae
    • Environmental Engineering Research
    • /
    • 제24권4호
    • /
    • pp.662-669
    • /
    • 2019
  • Anaerobic digestion is a popular sewage sludge (Ss) treatment method as it provides significant pollution control and energy recovery. However, the low C/N ratio and poor biodegradability of Ss necessitate pretreatment methods that improve solubilization under anaerobic conditions in addition to anaerobic co-digestion with other substrates to improve the process efficiency. In this study, three pretreatment methods, namely microwave irradiation, ultrasonication, and heat treatment, were investigated, and the corresponding improvement in methane production was assessed. Additionally, the simplex centroid design method was utilized to determine the optimum mixture ratio of food waste (Fw), livestock manure (Lm), and Ss for maximum methane yield. Microwave irradiation at 700 W for 6 min yielded the highest biodegradability (62.0%), solubilization efficiency (59.7%), and methane production (329 mL/g VS). The optimum mixture ratio following pretreatment was 61.3% pretreated Ss, 28.6% Fw, and 10.1% Lm. The optimum mixture ratio without pretreatment was 33.6% un-pretreated Ss, 46.0% Fw, and 20.4% Lm. These results indicate that the choice of pretreatment method plays an important role in efficient anaerobic digestion and can be applied in operational plants to enhance methane production. Co-digestion of Ss with Fw and Lm was also beneficial.

경기도 화성시 벼 재배지의 기후스마트 농업 기반의 평가 (Climate-Smart Agriculture(CSA)-Based Assessment of a Local Rice Cultivation in Hwaseong-city, Gyeonggi-do)

  • 주옥정;소호섭;이상우;이영순
    • 한국환경농학회지
    • /
    • 제41권1호
    • /
    • pp.32-40
    • /
    • 2022
  • BACKGROUND: Climate-smart agriculture (CSA) has been proposed for sustainable agriculture and food security in an agricultural ecosystem disturbed by climate change. However, scientific approaches to local agricultural ecosystems to realize CSA are rare. This study attempted to evaluate the weather condition, rice production, and greenhouse gas emissions from the rice cultivation in Hwaseong-si, Gyeonggi-do to fulfill CSA of the rice cultivation. METHODS AND RESULTS: Over the past 3 years (2017~2019), Chucheong rice cultivar yield and methane emissions were analyzed from the rice field plot (37°13'15"N, 127° 02'22"E) in the Gyeonggi-do Agricultural Research and Extension Services located in Gisan-dong, Hwaseong-si, Gyeonggi-do. Methane samples were collected from three automated closed chambers installed in the plot. The weather data measured through automatic weather station located in near the plot were analyzed. CONCLUSION(S): The rice productivity was found to vary with weather environment in the agricultural ecosystem. And methane emissions are high in a favorable weather condition for rice growth. Therefore, it is necessary to minimize the trade-off between the greenhouse gas emission target for climate change mitigation and productivity improvement for CSA in a local rice cultivation.

가혹한 조건의 SRM 반응에서 Ni-Ce0.8Zr0.2O2 촉매의 소성온도에 따른 영향 (The Effect of Calcination Temperature on the Performance of Ni-Ce0.8Zr0.2O2 Catalysts for Steam Reforming of Methane under Severe Conditions)

  • 장원준;정대운;심재오;노현석
    • 한국수소및신에너지학회논문집
    • /
    • 제23권3호
    • /
    • pp.213-218
    • /
    • 2012
  • Steam reforming of methane (SRM) is the primary method to produce hydrogen. Commercial Ni-based catalysts have been optimized for SRM with excess steam ($H_2O/CH_4$ > 2.5) at high temperatures (> $700^{\circ}C$). However, commercial catalysts are not suitable under severe conditions such as stoichiometric steam over methane ratio ($H_2O/CH_4$ = 1.0) and low temperature ($600^{\circ}C$). In this study, 15wt.% Ni catalysts supported on $Ce_{0.8}Zr_{0.2}O_2$ were prepared at various calcination temperatures for SRM at a very high gas hourly space velocity (GHSV) of $621,704h^{-1}$. The calcination temperature was systematically varied to optimize 15wt.% $Ni-Ce_{0.8}Zr_{0.2}O_2$ catalyst at a $H_2O/CH_4$ ratio of 1.0 and at $600^{\circ}C$. 15wt.% $Ni-Ce_{0.8}Zr_{0.2}O_2$ catalyst calcined at $500^{\circ}C$ exhibited the highest $CH_4$ conversion as well as stability with time on stream. Also, 15wt.% $Ni-Ce_{0.8}Zr_{0.2}O_2$ catalyst calcined at $500^{\circ}C$ showed the highest $H_2$ yield (58%) and CO yield (21%) among the catalysts. This is due to complex NiO species, which have relatively strong metal to support interaction (SMSI).

생물전기화학혐기소화조를 이용한 바이오가스생산에서 폐활성슬러지 혼합비의 영향 (Effect of Waste Activated Sludge Mixing Ratio on the Biogas Production in Bioelectrochemical Anaerobic Digestion)

  • 정재우;이명은;서선철;안용태
    • 유기물자원화
    • /
    • 제26권4호
    • /
    • pp.53-61
    • /
    • 2018
  • 혐기성소화(AD)는 폐활성슬러지의 유기물함량을 바이오가스로 전환할 수 있는 가장 널리 이용되는 공정 중 하나이다. 그러나 현재 전통적인 혐기성소화에 의한 실제 메탄수율은 이론적인 최대 메탄수율에 미치지 못하기 때문에 메탄수율을 높일 수 있는 방안의 지속적인 연구가 필요하다. 따라서 본 연구에서는 폐활성슬러지로부터 메탄수율을 높이기 위해 생물전기화학 혐기성소화조를 이용하여 혐기성소화슬러지와 생슬러지의 혼합비율(3:7, 5:5)에 따른 메탄수율 및 유기물제거 효율에 미치는 영향에 관하였다. 그 결과 생물전기화학 혐기성소화 슬러지의 혼합비가 3:7과 비교하여 5:5일 때 가장 높은 메탄수율 294.2 mL $CH_4/L$(0.63배 증가)과 52.5%(7.5% 증가)로 유기물제거효율을 가지는 것으로 나타났으며 pH, 알칼리도와 VFAs의 농도도 안정적으로 유지되었다. 이러한 결과는 혐기성소화 슬러지의 혼합비의 증가는 생물전기화학 혐기성소화조의 안정적인 성능유지를 위해 효과적인 것으로 나타났다.