• Title/Summary/Keyword: Methane Yield

Search Result 223, Processing Time 0.023 seconds

Kinetic Study of the Anaerobic Digestion of Swine Manure at Mesophilic Temperature: A Lab Scale Batch Operation

  • Kafle, Gopi Krishna;Kim, Sang-Hun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.233-244
    • /
    • 2012
  • Purpose: The kinetic evaluation was performed for swine manure (SM) degradation and biogas generation. Methods: The SM was anaerobically digested using batch digesters at feed to inoculum ratio (F/I) of 1.0 under mesophilic conditions ($36.5^{\circ}C$). The specific gas yield was expressed in terms of gram total chemical oxygen demand (mL/g TCOD added) and gram volatile solids added (mL/g VS added) and their effectiveness was discussed. The biogas and methane production were predicted using first order kinetic model and the modified Gompertz model. The critical hydraulic retention time for biomass washout was determined using Chen and Hashimoto model. Results: The biogas and methane yield from SM was 346 and 274 mL/ TCOD added, respectively after 100 days of digestion. The average methane content in the biogas produced from SM was 79% and $H_2S$ concentration was in the range of 3000-4108 ppm. It took around 32-47 days for 80-90% of biogas recovery and the TCOD removal from SM was calculated to be 85%. When the specific biogas and methane yield from SM (with very high TVFA concentration) was expressed in terms of oven dried volatile solids (VS) basis, the gas yield was found to be over estimated. The difference in the measured and predicted gas yield was in the range of 1.2-1.5% when using first order kinetic model and 0.1% when using modified Gompertz model. The effective time for biogas production ($T_{Ef}$) from SM was calculated to be in the range of 30-45 days and the critical hydraulic retention time ($HRT_{Critical}$) for biomass wash out was found to be 9.5 days. Conclusions: The modified Gompertz model could be better in predicting biogas and methane production from SM. The HRT greater than 10 days is recommended for continuous digesters using SM as feedstock.

Effect of Rice Straw on Methane Production Potential of Cow Manure (우분과 볏짚의 병합 혐기성 소화를 통한 메탄 생산에 대한 고찰)

  • Park, So Yun;Jang, Jeong A;Zhao, Xin;Hong, Jin-Kyung;Jho, Eun Hea
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.2
    • /
    • pp.71-81
    • /
    • 2022
  • BACKGROUND: Animal manures are one of the biggest sources of greenhouse gases and improper manage-ment of animal wastes contributes to the increasing greenhouse gases in the atmosphere. Con-verting greenhouse gases generated from animal manures to energy is one way of contributing to the net-zero carbon emissions. METHODS AND RESULTS: The potential for methane production from cow manure (CM) was studied by measuring the methane yield using the biochemical methane potential (BMP) test. In particular, the effect of co-digestion using rice straw (RM) on the methane production was studied. The methane yields from the co-digestion of CM and RS were statistically similar to that from the mono-digestion of CM or RS. But there was a synergy effect at the CM:RS ratio of 1:2 and 1:1. This can be attributed to the increased C/N ratio. The changed microbial community structure with the addition of substrates (CM, RS) probably led to the increase in the methane produc-tion. CONCLUSION(S): The methane production potential of the particular CM used in this study was not improved by the addition of RS as a co-substrate. The addition of substrates to the anaerobic sludge promoted the increase in the microbial species having synergetic relationship with methano-gens, and this can partially explain the increase in the methane production with the addition of substrates. Overall, there are needs for further studies to improve the methane yield from CM.

A Effect of Reaction Conditions on Syngas Yield for the Preparation of Syngas from Landfill Gas (매립지가스(LFG)로부터 합성가스 제조시 반응조건에 따른 수율에 미치는 연구)

  • CHO, WOOKSANG;CHOI, KEONGDON;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.477-483
    • /
    • 2015
  • LFG (Land-Fill Gas) includes components of $CH_4$, $CO_2$, $O_2$, $N_2$, and water. The preparation of synthesis gas from LFG as a DME (Dimethyl Ether) feedstock was studied by methane reforming of $CO_2$, $O_2$ and steam over $NiO-MgO-CeO_2/Al_2O_3$ catalyst. Our experiments were performed to investigate the effects of methane conversion and syngas yield on the amount of LFG components over $NiO-MgO-CeO_2/Al_2O_3$ catalyst. Results were obtained through the methan reforming experiments at the temperature of $900^{\circ}C$ and GHSV of 8,800. The results were as following; it has generally shown that syngas yield increase with the increase of oxygen and steam amounts and then decrease. Highly methane conversion of above 98% and syngas yield of approximately 60% were obtained in the feed of gas composition flow-rate of 243ml/min of $CH_4$, 241ml/min of $CO_2$, 195ml/min of $O_2$, 48ml/min of $N_2$, and 450ml/min of steam, respectively, under reactor pressure of 1 bar for 200 hrs of reaction time. Also, it was shown that catalyst deactivation by coke formation was reduced by excessively adding oxygen and steam as an oxidizer of the methane reforming.

The Methane Production from Organic Waste on Single Anaerobic Digester Equipped with MET (Microbial Electrochemical Technology) (미생물 전기화학 기술이 설치된 단일 혐기성소화조에서 유기성폐기물로부터 메탄생성)

  • Park, Jungyu;Tian, Dongjie;Lee, Beom;Jun, Hangbae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.4
    • /
    • pp.201-209
    • /
    • 2016
  • Theoretical maximum methane yield of glucose at STP (1 atm, $0^{\circ}C$) is 0.35 L $CH_4/g$ COD. However, most researched actual methane yields of anaerobic digester (AD) on lab scale is lower than theoretical ones. A wide range of them have been reported according to experiments methods and types of organic matters. Recent year, a MET (Microbial electrochemical technology) is a promising technology for producing sustainable bio energies from AD via rapid degradation of high concentration organic wastes, VFAs (Volatile Fatty Acids), toxic materials and non-degradable organic matters with electrochemical reactions. In this study, methane yields of food waste leachate and sewage waste sludge were evaluated by using BMP (Biochemical Methane Potential) and continuous AD tests. As the results, methane production volume from the anaerobic digester equipped with MET (AD + MET) was higher than conventional AD in the ratio of 2 to 3 times. The actual methane yields from all experiments were lower than those of theoretical value of glucose. The methane yield, however, from the AD + MET occurred similar to the theoretical one. Moreover, biogas compositions of AD and AD + MET were similar. Consequently, methane production from anaerobic digester with MET increased from the result of higher organic removal efficiency, while, further researches should be required for investigating methane production mechanisms in the anaerobic digester with MET.

Sustainable anaerobic digestion of euphorbiaceae waste for biogas production: Effects of feedstock variation

  • Kamaruddin, Mohamad Anuar;Ismail, Norli;Fauzi, Noor Fadhilah;Alrozi, Rasyidah;Hanif, Mohamad Haziq;Norashiddin, Faris Aiman
    • Advances in environmental research
    • /
    • v.10 no.1
    • /
    • pp.87-103
    • /
    • 2021
  • Anaerobic digestion (AD) refers to the biological process which can convert organic substrates to biogas in the absence of oxygen. The aim of this study was to determine the capability of feedstock to produce biogas and to quantify the biogas yield from different feedstocks. A co-digestion approach was carried out in a continuous stirred tank reactor operated under mesophilic conditions and at a constant organic loading rate of 0.0756 g COD/ L.day, with a hydraulic retention time of 25 days. For comparison, mono-digestion was also included in the experimental work. 2 L working volumes were used throughout the experimental work. The seed culture was obtained from composting as substrate digestion. When the feedstock was added to seeding, the biogas started to emit after three days of retention time. The highest volume of biogas was observed when the seeding volume used for 1000mL. However, the lowest volume of biogas yield was obtained from both co-digestion reactors, with a value of 340 mL. For methane yield, the highest methane production rate was 0.16 L CH4/mg. The COD with yield was at 8.6% and the lowest was at 0.5%. The highest quantity of methane was obtained from a reactor of Euphorbiaceae peel with added seeding, while the lowest methane yield came from a reactor of Euphorbiaceae stems with added seeding. In this study, sodium bicarbonate (NaHCO3) was used as a buffering solution to correct the pH in the reactor if the reactor condition was found to be in a souring or acidic condition.

Fabrication of Ni-Cr-Al Metal Foam-Supported Catalysts for the Steam Methane Reforming (SMR), and its Mechanical Stability and Hydrogen Yield Efficiency (수증기 메탄 개질 반응을 이용한 수소 생산용 Ni-Cr-Al 다공체 지지 촉매의 제조, 기계적 안정성 및 수소 환원 효율)

  • Kim, Kyu-Sik;Kang, Tae-Hoon;Kong, Man Sik;Park, Man-Ho;Yun, Jung-Yeul;Ahn, Ji Hye;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.201-207
    • /
    • 2021
  • Ni-Cr-Al metal-foam-supported catalysts for steam methane reforming (SMR) are manufactured by applying a catalytic Ni/Al2O3 sol-gel coating to powder alloyed metallic foam. The structure, microstructure, mechanical stability, and hydrogen yield efficiency of the obtained catalysts are evaluated. The structural and microstructural characteristics show that the catalyst is well coated on the open-pore Ni-Cr-Al foam without cracks or spallation. The measured compressive yield strengths are 2-3 MPa at room temperature and 1.5-2.2 MPa at 750℃ regardless of sample size. The specimens exhibit a weight loss of up to 9-10% at elevated temperature owing to the spallation of the Ni/Al2O3 catalyst. However, the metal-foam-supported catalyst appears to have higher mechanical stability than ceramic pellet catalysts. In SMR simulations tests, a methane conversion ratio of up to 96% is obtained with a high hydrogen yield efficiency of 82%.

Anaerobic Mono- and Co-digestion of Primary Sludge, Secondary Sludge and Food Waste: Biogas Production at Different Mixture Ratio (일차슬러지, 이차슬러지 및 음식물류폐기물의 단독 및 통합 혐기성 소화: 혼합비율 차이에 따른 바이오가스 생산량 조사)

  • Seonmin Kang;Minjae Kim;Juyun Lee;Sungyun Jung;Taeyoon Lee;Kwang Hee Nam;Joonyeob Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.1
    • /
    • pp.47-55
    • /
    • 2023
  • This study evaluated the biochemical methane potential (BMP) of primary sludge, secondary sludge, and food waste in batch anaerobic mono-digestion tests, and investigated the effects of mixture ratio of those organic wastes on methane yield and production rate in batch anaerobic co-digestion tests, that were designed based on a simplex mixture design method. The BMP of primary sludge, secondary sludge and food waste were determined as 234.2, 172.7, and 379.1 mL CH4/g COD, respectively. The relationships between the mixing ratio of those organic wastes with methane yield and methane production rate were successfully expressed in special cubic models. Both methane yield and methane production rate were estimated as higher when the mixture ratio of food waste was higher. At a mixing ratio of 0.5 and 0.5 for primary sludge and food waste, the methane yield of 297.9 mL CH4/g COD was expected; this was 19.4% higher than that obtained at a mixing ratio of 0.3333, 0.3333 and 0.3333 for primary sludge, secondary sludge, and food waste (249.5 mL CH4/g COD). These findings could be useful when designing field-scale anaerobic digersters for mono- and co-digestion of sewage sludges and food waste.

Biochemical Methane Potential of Agricultural Byproduct in Greenhouse Vegetable Crops (국내 주요 시설채소 부산물의 메탄 생산 퍼텐셜)

  • Shin, Kook-Sik;Kim, Chang-Hyun;Lee, Sang-Eun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1252-1257
    • /
    • 2011
  • Number of crop residues generated at large amount in agriculture can be utilized as substrate in methane production by anaerobic digestion. Greenhouse vegetable crop cultivation that adopting intensive agricultural system require the heating energy during winter season, meanwhile produce waste biomass source for the methane production. The purpose of this study was to investigate the methane production potential of greenhouse vegetable crop residues and to estimate material and energy yield in greenhouse system. Cucumber, tomato, and paprika as greenhouse vegetable crop were used in this study. Fallen fruit, leaf, and stem residues were collected at harvesting period from the farmhouses (Anseong, Gyeonggi, Korea) adopting an intensive greenhouse cultivation system. Also the amount of fallen vegetables and plant residues, and planting density of each vegetable crop were investigated. Chemical properties of vegetable waste biomass were determined, and theoretical methane potentials were calculated using Buswell's formula from the element analysis data. Also, BMP (Biochemical methane potential) assay was carried out for each vegetable waste biomass in mesophilic temperature ($38^{\circ}C$). Theoretical methane potential ($B_{th}$) and Ultimate methane potential ($B_u$) off stem, leaf, and fallen fruit in vegetable residues showed the range of $0.352{\sim}0.485Nm^3\;kg^{-1}VS_{added}$ and $0.136{\sim}0.354Nm^3\;kg^{-1}VS_{added}$ respectively. The biomass yields of residues of tomato, cucumber, and paprika were 28.3, 30.5, and $21.5Mg\;ha^{-1}$ respectively. The methane yields of tomato, cucumber, and paprika residues showed 645.0, 782.5, and $686.8Nm^3\;ha^{-1}$. Methane yield ($Nm^3\;ha^{-1}$) of crop residue may be highly influenced by biomass yield which is mainly affected by planting density.

Potential Methane Production on Anaerobic Co-digestion of Swine Manure and Food Waste

  • Shin, Joung-Du;Park, Sang-Won;Kim, Sang-Hyoun;Duangmanee, Jack;Lee, Po-Heng;Sung, Shi-Hwu;Lee, Bong-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.2
    • /
    • pp.145-149
    • /
    • 2008
  • Anaerobic co-digestion of swine manure and food waste for biogas production was performed in serum bottles at various volatile solids(VS) contents and mixing ratios of two substrates(swine manure:food waste=$100:0{\sim}0:100$). Through kinetic mode of surface methodology, the methane production was fitted to a Gompertz equation. The ultimate methane production potential of swine manure alone was lower than that of food waste regardless of VS contents. However, it was appeared that maximum methane production potentials in 80 : 20 of the mixing rate at VS 3% was enhanced at 144.7%, compared to its only swine manure. The potential increased up to 815.71 ml/g VS fed as VS concentration and food composition increased up to 3.0% and 20%, respectively. The ultimate amount of methane produced had significantly a positive relationship with that of methane yield rate. Overall, it would be strongly recommended that feeding stocks use 20% of mixing ratio of food waste based on VS 3% contents when operating the anaerobic reactor on site at $35^{\circ}C$ if not have treatment of its anaerobic waste water.

Optimization of Methane Yield in Anaerobic Digestion of Sewage Sludge with Microwave Pretreatment (극초단파 전처리를 적용한 하수슬러지 혐기성소화에서 메탄수율 최적화)

  • Park, WoonJi;Lee, GwanJae;Lee, DongJun;Lee, SeoRo;Choi, YuJin;Hong, JiYeong;Yang, DongSeok;Lim, KyoungJae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.17-29
    • /
    • 2020
  • The objective of this study was to find an optimum methane yield condition in anaerobic digestion of sewage sludge with microwave pretreatment. The pretreatment process was carried out using a lab scale industrial microwave unit (2,450 MHz frequency). The digestion efficiency of pretreated sludge was evaluated by biochemical methane potential (BMP) test. Box-Behnken design and Response Surface Analysis (RSA) were applied to determine the optimal combination of sludge mixing ratio (0 to 100%), power (400 to 1600 W), holding time (0 to 10 min) and pretreatment temperature (60 to 100℃). BMP test results showed that Volatile Solid (VS) removal efficiency was up to 48% at a condition of 0% for mixing ratio, 1600 W for power, 5 min for holding time, and 80℃ for pretreatment temperature. Methane production was up to 832.3 mL/g VSremoved at a condition of 50% for mixing ratio, 1000 W for power, 5 min for holding time, and 80℃ for pretreatment temperature. The results of the variance analysis (ANOVA) showed that the p-value of the power and pretreatment temperature among the independent variables were significant (p<0.05), and in particular, the pretreatment temperature significantly affected on the solubilization and methane production. The optimum condition for the maximum methane yield (847 mL/g VSremoved) was consist of 38.4% of mixing ratio, 909.1 W of power, 4.1 min of holding time, and 80℃ of temperature within the design boundaries.