• Title/Summary/Keyword: Methane Engine

Search Result 112, Processing Time 0.026 seconds

Studies of Methane Oxidation Catalyst on H2-CNG Mixed Fuel Vehicles (수소-CNG 혼소연료 차량에서의 메탄 저감을 위한 산화촉매에 관한 연구)

  • Lee, Ung-Jae;Shim, Kyung-Sil;Yang, Jaechun;Kim, Tae-Min
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.22-27
    • /
    • 2013
  • HCNG engine is performed as a future engine because of high combustion efficiency and eco-friendly property, and is predicted to a brdge of hydrogen vehicles. As EURO-6 regulagion is due to be applied in 2014, consolidated regulations of methane gas that is exhausted from CNG and HCNG vehicles will come into effect. In this studies, methane oxidation catalyst is introduced to remove methane gas from HCNG emissions. Methane oxidation efficiency on catalyst was studied when it is driven long time. And characterization like metal dispersion, surface area was performed to investigate the correlation of catalyst efficiency and characteristics.

A Mixing Head Integrated, Multi-Ignition Device for Liquid Methane Engine (액체메탄엔진용 믹싱헤드 일체형 다중점화장치)

  • Lim, Byoungjik;Lee, Junseong;Lee, Keejoo;Park, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.54-65
    • /
    • 2022
  • We are developing a compact ignition device that can provide a multi-ignition capability for an upper stage methane engine of a two staged small satellite launch vehicle. Firstly, the multi-ignition device is designed and built as an integral part of an additively manufactured mixing head. Secondly, the ignition device requires no separate high-pressure vessels to store ignition propellants as they are branched out from the main feed lines for the mixing head. We performed experiments at various levels, including igniter autonomous tests, thrust chamber ignition and combustion tests on the new compact ignition device which is integrated in the thrust chamber of one-tonf class liquid oxygen/liquid methane engine, and confirmed stable ignition performance.

Step-by-step Tests for Continuous Thrust Control Hot-firing Test (연속 추력제어 연소시험을 위한 단계별 시험들)

  • Cheolwoong Kang;Shinwoo Lee;Sunwoo Han;Kangyeong Lee ;Hadong Jung;Dongwoo Choi;Kyubok Ahn
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.58-67
    • /
    • 2023
  • Results of dry-run tests, cold-flow tests, and hot-firing tests performed to throttle a methane engine uni-element thrust chamber are covered in the paper. After installing flow control valves on the oxidizer and fuel supply lines of the methane engine combustion test facility, a number of dry-run tests were repeated so that the valves could reach set strokes quickly and stably. Then, cold-flow tests using liquid nitrogen and gaseous nitrogen were conducted to confirm the stable supply of the simulated propellants according to the valve control. Finally, using liquid oxygen and gaseous methane, hot-firing tests for fixed and continuous thrust control of 50% to 10% of the nominal thrust were successfully performed.

DEVELOPMENT OF HIGH EFFICIENCY COGENERATION SYSTEM USING BIOGAS FOR THE LOWER POLLUTION OF THE ENVIRONMENTAL

  • Park, J.S.;Ishii, K.;Terao, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.670-675
    • /
    • 2000
  • The purpose of the study is development and investigation about basic performance of the system operation on a dual fueled cogeneration system(CGS), which is operated with biogas and gas oil. As often seen in dual fueled CGS performance, the electric generating efficiency was obtained about 26□. Methane contained in the biogas could not bum completely at lower load, and it was discharged into exhaust gas. Considerable amount of the methane burned in the exhaust pipe, and the heat recovery ratio was 42□ on heat balance. As a result, the total heat efficiency, which is a summation of generating efficiency and heat recovery efficiency reached to about 70□. The supply of biogas into the engine reduces smoke density and NOx concentration in exhaust gas. At lower load, methane burned slowly and large portion of it was discharged without burning. Therefore the measures are desirable that promotes combustion of methane at lower load.

  • PDF

A Study on Emission Charncteristics and EGR Application of Blending Fuels with Biodiesel Fuel and Oxygenate Component in a D.I. Diesel Engine (직접분사식 디젤기관에서 바이오디젤유와 함산소성분 혼합연료 적용시 배기배출물 특성 및 EGR의 적용 연구)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.43-48
    • /
    • 2008
  • The exhaust emissions of diesel engine are recognized as a major cause influencing environment strongly. In this study, the possibility of biodiesel fuel and oxygenated fuel(dimethoxy methane; DMM) was investigated as an alternative fuel for a naturally aspirated direct injection diesel engine. The smoke emission of blending fuel(biodiesel fuel 90vol-%+DMM 10vol-%) was reduced approximately 70% at 2500rpm, full load, in comparison with the diesel fuel. But, power, torque and brake specific energy consumption showed no significant differences. But, NOx emission of biodiesel fuel and DMM blended fuel increased compared with commercial diesel fuel due to the oxygen component in the fuel. It was needed a NOx reduction counterplan that EGR method was used as a countermeasure for NOx reduction. It was found that simultaneous reduction of smoke and NOx emission was achieved with BDF(95 vol-%) and DMM(5 vol-%) blended fuel and cooled EGR method(15%).

우주발사체용 터보펌프 액체추진기관 시스템 분석

  • Seo, Kyoun-Su;Joh, Mi-Ok;Choi, Young-In;Hong, Soon-Do;Oh, Bum-Seok
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.151-156
    • /
    • 2003
  • Liquid rocket engine system is classified into an engine of pressurization and turbo pump type by the way of fuel fed-supporting system. In the KSR-III sounding rocket, an engine of pressurization type was used, but there was lots of technical problems to be solved for a use as the first stage engine of space launch vehicle. So, an engine of turbo pump type was required to be developed to overcome the technical limitation of liquid rocket engine. In this research, the analysis of propellant of Kerosine-LOX and methane-LOX which are noticed as a future propellant was carried out for the purpose of studying the basic characteristics. And to review the basic characteristics of an engine of turbo pump type, among the sizing variant of the space launch vehicle, the ways of injecting a satellite to a direct orbit and transient orbit were discussed in this paper.

  • PDF

Experimental Study on Comparison of Flame Propagation Velocity for the Performance Improvement of Natural Gas Engine

  • Chung Jin Do;Jeong Dong Soo
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • Natural gas possesses several characteristics that make it desirable as an engine fuel; 1)lower production cost, 2)abundant commodity and 3)cleaner energy source than gasoline. Due to the physics characteristics of natural gas, the volumetric efficiency and flame speed of a natural gas engine are lower than those of a gasoline engine, which results in a power loss of $10-20{\%}$ when compared to a normal gasoline engine. This paper describes the results of a research to improve the performance of a natural gas engine through the modification and controls of compression ratio, air/fuel ratio, spark advance and supercharging and method of measuring flame propagation velocity. It emphasizes how to improve the power characteristics of a natural gas engine. Combustion characteristics are also studied using an ion probe. The ion probe is applied to measure flame speed of gasoline and methane fuels to confirm the performance improvement of natural gas engine combustion characteristics.

A Study on Fuel Selection for Next-Generation Launch Vehicles (차세대 발사체용 연료선정에 관한 연구)

  • Kim, Cheulwoong;Lim, Byoungjik;Lee, Keejoo;Park, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.62-80
    • /
    • 2021
  • The requirements for the next-generation propulsion system and for a good propellant have been summarized. The characteristics and effectiveness of kerosene, hydrogen, and methane, which are the fuels that are mainly attracting attention in Korea and abroad, were compared with each other. As a result of the comparison, methane was evaluated to be more advantageous than other fuels in reliability, cost, reusability, maintenance, eco-friendliness, safety, lifespan, technical difficulties, engine cycle selection, application of common bulkhead, and non-disassembly/reassembly delivery. And in terms of performance, the specific impulse of methane is higher than that of kerosene, so the efficiency of the launch vehicle can be increased. Methane's properties incluidng eco-friendliness, low-temperature combustion, long life, and maintenability make it beneficial for reuse and for the development of multi-purpose engines.

Conceptual Design of a LOX/Methane Rocket Engine for a Small Launcher Upper Stage (소형발사체 상단용 액체메탄 로켓엔진의 개념설계)

  • Kim, Cheulwoong;Lim, Byoungjik;Lee, Junseong;Seo, Daeban;Lim, Seokhee;Lee, Keum-Oh;Lee, Keejoo;Park, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.54-63
    • /
    • 2022
  • A 3-tonf class liquid rocket engine that powers the upper stage of a small launcher and lifts 500 kg payload to 500 km SSO is designed. The small launcher is to utilize the flight-proven technology of the 75-tonf class engine for the first stage. A combination of liquid oxygen and liquid methane has been selected as their cryogenic states can provide an extra boost in specific impulse as well as enable a weight saving via the common dome arrangement. An expander cycle is chosen among others as the low-pressure operation makes it robust and reliable while a specific impulse of over 360 seconds is achievable with the nozzle extension ratio of 120. Key components such as combustion chamber and turbopump are designed for additive manufacturing to a target cost. The engine system provides an evaporated methane for the autogenous pressurization system and the reaction control of the stage. This upper stage propulsion system can be extended to various missions including deep space exploration.

A Study on Application of Dimethoxy Methane and EGR Method for Simultaneous Reduction of Smoke and NOx Emission (매연과 NOx의 동기저감을 위한 Dimethoxy Methane과 EGR방법의 적용에 관한 연구)

  • Choi, Seung-Hun;Oh, Young-Taig;Hwang, Yun-Taig;Song, Ki-Hong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.448-453
    • /
    • 2003
  • In this study, the effects of oxygen component in fuel and exhaust gas recirculation(EGR) method on the exhaust emissions has been investigated for a D.I. diesel engine. It was tested to estimate change of exhaust emission characteristics for the commercial diesel fuel and oxygenate blended fuel which has five kinds of blending ratio. Dimethoxy methane(DMM) contains oxygen component 42.5% in itself. and it is a kind of effective oxygenated fuel for reduction of smoke emission. It was affirmed that smoke emission was decreased with increasing of DMM blending ratio. But, NOx emission was increased compared with commercial diesel fuel. It was needed a NOx reduction countermeasure that EGR method was used as a countermeasure for NOx reduction. It was found that simultaneous reduction of smoke and NOx emission was achieved with DMM blended fuel and cooled EGR method($10{\sim}15%$).

  • PDF