• Title/Summary/Keyword: Methane Emissions

Search Result 260, Processing Time 0.025 seconds

Studies of Methane Oxidation Catalyst on H2-CNG Mixed Fuel Vehicles (수소-CNG 혼소연료 차량에서의 메탄 저감을 위한 산화촉매에 관한 연구)

  • Lee, Ung-Jae;Shim, Kyung-Sil;Yang, Jaechun;Kim, Tae-Min
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.22-27
    • /
    • 2013
  • HCNG engine is performed as a future engine because of high combustion efficiency and eco-friendly property, and is predicted to a brdge of hydrogen vehicles. As EURO-6 regulagion is due to be applied in 2014, consolidated regulations of methane gas that is exhausted from CNG and HCNG vehicles will come into effect. In this studies, methane oxidation catalyst is introduced to remove methane gas from HCNG emissions. Methane oxidation efficiency on catalyst was studied when it is driven long time. And characterization like metal dispersion, surface area was performed to investigate the correlation of catalyst efficiency and characteristics.

Methane emission from municipal solid waste dumpsites: A case study of Chennai city in India

  • Srinivasan, Pavithrapriya;Andimuthu, Ramachandran;S.N., Ahamed Ibrahim;Ramachandran, Prasannavenkatesh;Rajkumar, Easwari;Kandasamy, Palanivelu
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.97-107
    • /
    • 2020
  • The indiscriminate growth in global population poses a threat to the world in handling and disposal of Municipal solid waste. Rapid urban growth increases the production, consumption and generation of Municipal solid waste which leads to a drastic change in the environment. The methane produced from the Municipal Solid waste accounts for up to 11% global anthropogenic emissions, which is a major cause for global warming. This study reports the methane emission estimation using IPCC default, TNO, LandGEM, EPER and close flux chamber from open dump yards at Perungudi and Kodungaiyur in Chennai, India. The result reveals that the methane emission using close flux chamber was in the range of 8.8 Gg/yr-11.3 Gg/yr and 6.1Gg/yr to 9.1 Gg/yr at Kodungaiyur and Perungudi dump yard respectively. The per capita waste generation was estimated based on waste generation and population. The waste generation potential was projected using linear regression model for the period 2017-2050. The trend of CH4 emission in the actual field measurement were increased every year, similarly the emission trend also increased in IPCC default method (mass balance approach), EPER Germany (zero order decay model) where as TNO and Land GEM (first order decay model) were decreased. The present study reveals that Kodungaiyur dump yard is more vulnerable to methane emission compared to Perungudi dump yard and has more potential in waste to energy conversion mechanisms than compare to Perungudi dump yard.

Combustion Characteristics and the Modeling of Ionized Methane for Battery Fires (배터리화재를 모사한 이온화 메탄의 연소특성 및 모델링)

  • Ko, Hyuk-Ju;Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Rechargeable battery such as lithium-ion battery has been noticed as a kinds of the energy storage system in the recent energy utilization and widely used actually in various small electronic equipment and electric vehicles. However, many thermal runaway caused battery accidents occurred recently, which still is obstacle for advanced application of lithium ion battery. One of the main differences to general fires is the existence of ionized electrolyte with electron during combustion. Therefore, we simply simulated the ion addition effects of battery fires by introducing an ionized fuel in jet diffusion flames. When the ionized methane through a corona discharge was used as fuel, the overall flame stability and shape such as flame length showed no significant difference from normal methane flame, but NOx and CO emissions measured at the post flame region decreased. The ion addition effect of methane oxidation was also numerically simulated with the modeling of hydrogen addition in the mixture. It was confirmed that the hydrogen addition at a fixed temperature had a similar effects on ionization of methane and hence could be modeled successfully.

Estimation of Gaseous Hazardous Air Pollutants Emission from Vehicles (자동차에서 배출되는 가스상 유해대기오염물질 (HAPs) 배출량 추정)

  • Kim, Jeong;Jang, Young-Kee;Choi, Sang-Jin;Kim, Jeong-Soo;Seo, Choong-Yeol;Son, Ji-Hwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Hazardous Air Pollutants (HAPs) are difficult to measure, analyze and assess for risk because of low ambient concentrations and varieties. Types of HAPs are Volatile organic compounds (VOCs), Polycyclic aromatic hydrocarbon (PAHs) and Aldehydes. HAP emissions from vehicles are a contributor to serious adverse health effects in urban areas. In this study, hazardous air pollutant emissions from road transport vehicles by Non-methane volatile organic compounds (NMVOC) weight fraction and PAHs emission factors are estimated in 2008. The top-five-most hazardous air pollutant emissions were estimated to toluene 864.3 ton/yr, acrolein 690.6 ton/yr, acetaldehyde 554.5 ton/yr, formaldehyde 498.7 ton/yr, propionaldehyde 421.6 ton/yr in 2008. The results for a cancer and non-cancer risk assessment of HAPs emissions show that the major cancer driver is formaldehyde and the non-cancer driver is acrolein.

Strategies for reducing noxious gas emissions in pig production: a comprehensive review on the role of feed additives

  • Md Mortuza Hossain;Sung Bo Cho;In Ho Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.237-250
    • /
    • 2024
  • The emission of noxious gases is a significant problem in pig production, as it can lead to poor production, welfare concerns, and environmental pollution. The noxious gases are the gasses emitted from the pig manure that contribute to air pollution. The increased concentration of various harmful gasses can pose health risks to both animals and humans. The major gases produced in the pig farm include methane, hydrogen sulfide, carbon dioxide, ammonia, sulfur dioxide and volatile fatty acids, which are mainly derived from the fermentation of undigested or poorly digested nutrients. Nowadays research has focused on more holistic approaches to obtain a healthy farm environment that helps animal production. The use of probiotics, prebiotics, dietary enzymes, and medicinal plants in animal diets has been explored as a means of reducing harmful gas emissions. This review paper focuses on the harmful gas emissions from pig farm, the mechanisms of gas production, and strategies for reducing these emissions. Additionally, various methods for reducing gas in pigs, including probiotic interventions; prebiotic interventions, dietary enzymes supplementation, and use of medicinal plants and organic acids are discussed. Overall, this paper provides a comprehensive review of the current state of knowledge on reducing noxious gas in pigs and offers valuable insights for pig producers, nutritionists, and researchers working in this area.

Exhaust VOCs Emission Characteristics from Motor Vehicles (자동차의 배기관 VOCs 배출 특성)

  • Lyu, Young-Sook;Ryu, Jung-Ho;Han, Jong-Soo;Kim, Sun-Moon;Lim, Cheol-Soo;Kim, Dae-Wook;Lee, Dong-Min;Lee, Joong-Koo;Eom, Myung-Do;Kim, Jong-Choon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.3
    • /
    • pp.275-283
    • /
    • 2008
  • Since mobile source is a major source of VOCs, quantifying emissions from motor vehicles is an important factor to control VOCs in atmosphere. In this study, in order to evaluate tailpipe VOCs emissions from motor vehicles, mass emissions of non-methane volatile organic compounds from 45 vehicles were determined. Measurements were made on a chassis dynamometer using CVS-75 mode and speed specific drive modes. Target VOCs are 53 compounds determined as the volatile ozone precursors. The individual VOCs composition of vehicle emission and emission rates were also determined. In case of gasoline vehicles, VOCs emission from over 80,000 km vehicles were about 46% larger than less 80,000 km vehicles. The difference in benzene and toluene according to driving mileage was 44% and 26% respectively. The composition of VOCs were different by fuel type. The order of VOCs composition was paraffins>aromatics>olefins in gasoline vehicle emissions, paraffins>olefins>aromatics in light duty diesel vehicle emissions. The VOCs emissions were decreased as vehicle speed increasing. These results will be used to calculate total VOCs emissions from automobiles in the future.

A Study on Application of Dimethoxy Methane and EGR Method for Simultaneous Reduction of Smoke and NOx Emission (매연과 NOx의 동기저감을 위한 Dimethoxy Methane과 EGR방법의 적용에 관한 연구)

  • Choi, Seung-Hun;Oh, Young-Taig;Hwang, Yun-Taig;Song, Ki-Hong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.448-453
    • /
    • 2003
  • In this study, the effects of oxygen component in fuel and exhaust gas recirculation(EGR) method on the exhaust emissions has been investigated for a D.I. diesel engine. It was tested to estimate change of exhaust emission characteristics for the commercial diesel fuel and oxygenate blended fuel which has five kinds of blending ratio. Dimethoxy methane(DMM) contains oxygen component 42.5% in itself. and it is a kind of effective oxygenated fuel for reduction of smoke emission. It was affirmed that smoke emission was decreased with increasing of DMM blending ratio. But, NOx emission was increased compared with commercial diesel fuel. It was needed a NOx reduction countermeasure that EGR method was used as a countermeasure for NOx reduction. It was found that simultaneous reduction of smoke and NOx emission was achieved with DMM blended fuel and cooled EGR method($10{\sim}15%$).

  • PDF

Possibility of aerobic stabilization technology for reducing greenhouse gas emissions from landfills in Korea (국내 폐기물매립지 온실가스 감축을 위한 호기성 안정화 공법의 적용 가능성)

  • Ban, Jong-Ki;Park, Jin-Kyu;Kim, Kyung;Yoon, Seok-Pyo;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.40-51
    • /
    • 2015
  • This study is to estimate the viability of aerobic stabilization technology for reducing greenhouse gas (GHG) emissions from landfills in Korea. In this study, methane emissions were estimated by applying Landfill gas estimation model (LandGEM) to Y landfill in Korea. By comparison of an anaerobic condition (baseline) and an aerobic condition, the amount of $CO_2eq$ savings was calculated. The $CO_2eq$ savings take place inside the landfilled waste during aeration due to the conversion of previously anaerobic biodegradation to aerobic processes, releasing mainly $CO_2$. It was demonstrated that 86.6% of the total GHG emissions occurring under anaerobic conditions could be reduced by aerobic stabilization technology. This means the aerobic stabilization technology could reduce environmental contamination through early stabilization and GHG emissions considerably at the same time. Therefore, the aerobic stabilization technology is one of the optimal technologies that could be employed to domestic landfill sites to achieve sustainable landfill.

Gentiana straminea supplementation improves feed intake, nitrogen and energy utilization, and methane emission of Simmental calves in northwest China

  • Xie, K.L.;Wang, Z.F.;Guo, Y.R.;Zhang, C.;Zhu, W.H.;Hou, F.J.
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.838-846
    • /
    • 2022
  • Objective: Native plants can be used as additives to replace antibiotics to improve ruminant feed utilization and animal health. An experiment was conducted to evaluate the effects of Gentiana straminea (GS) on nutrient digestibility, methane emissions, and energy metabolism of Simmental calves. Methods: Thirty-two (5-week-old) male Simmental clves, with initial body weight (BW) of 155±12 kg were fed the same basal diet of concentrates (26%), alfalfa hay (37%), and oat hay (37%) and were randomly separated into four treatment groups according to the amount of GS that was added to their basal diet. The four different groups received different amounts of GS as a supplement to their basal diet during whole experiment: (0 GS) 0 mg/kg BW, the control; (100 GS) 100 mg/kg BW; (200 GS) 200 mg/kg BW; and (300 GS) 300 mg/kg BW. Results: For calves in the 200 GS and 300 GS treatment groups, there was a significant increase in dry matter (DM) intake (p<0.01), average daily gain (ADG) (p<0.05), organic matter intake (p<0.05), DM digestibility (p<0.05), neutral detergent fibre (NDF) digestibility (p<0.05), and acid detergent fibre (ADF) digestibility (p<0.05). Dietary GS supplementation result in quadratic increases of DM intake (p<0.01), ADG (p<0.05), NDF intake (p<0.05), and ADF intake (p<0.05). Supplementing the basal diet with GS significantly increased nitrogen (N) retention (p<0.001) and the ratio of retention N to N intake (p<0.001). Supplementing the basal diet with GS significantly decreased methane (CH4) emissions (p<0.01), CH4/BW0.75 (p<0.05) and CH4 energy (CH4-E) (p<0.05). Dietary GS supplementation result in quadratic increases of CH4 (p<0.01) and CH4/DM intake (p<0.01). Compared with 0 GS, GS-supplemented diets significantly improved their gross energy intake (p<0.05). The metabolizable energy and digestive energy intake were significantly greater for calves in the 100 GS and 200 GS calves than for 0 GS calves (p<0.05). Conclusion: From this study, we conclude that supplementing calf diets with GS could improve utilization of feed, energy, and N, and may reduce CH4 emissions without having any negative effects on animal health.

An Integrated Emission Model of Greenhouse Gases to Assess Regional Climate Change

  • Moon, Yun-Seob;Oh, Sung-Nam;Hyun, Myung-Suk
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.421-422
    • /
    • 2003
  • Greenhouse gases (GHGs) such as carbon dioxide ($CO_2$), methane (CH$_4$), nitrous oxide ($N_2$O), chlorofluorocarbons (CFCs), sulphur hexafluoride (SF$_{6}$), together with water vapour ($H_2O$) and ozone play an important role in determining the earth's climate. The primary cause of the enhancement of GHGs is the global use of fossil fuels to generate heat, power, and electricity for a growing world population, as well as the changes in the land use, especially for agriculture. In addition, biomass buring and biofuel emissions play major roles in the GHG emissions in the Asian region because they produce large amounts of carbon monoxide (CO), nonmethane volatile organic compounds(NMVOC), black carbon(BC) and other gases. (omitted)d)

  • PDF