• 제목/요약/키워드: Methane Content

검색결과 248건 처리시간 0.026초

논토양 종류가 메탄배출에 미치는 영향 (Effects of Soil Types on Methane Gas Emission in Paddy During Rice Cultivation)

  • 서영진;박준홍;김찬용;김종수;조두현;최성용;박소득;정현철;이덕배;김광섭;박만
    • 한국토양비료학회지
    • /
    • 제44권6호
    • /
    • pp.1220-1225
    • /
    • 2011
  • 논토양 종류가 메탄배출에 미치는 영향을 구명하기 위하여 적황색토인 화동통과 회색토인 신흥통을 공시하여 벼 재배기간중 메탄배출량, 산화환원전위 및 토양중 산화물 함량을 분석하였다. 적황색토에서 메탄배출이 회색토에 비해 유의하게 낮았으며, 산화환원전위는 상대적으로 높았다. 적황색토는 회색토에 비해 쉽게 환원될 수 있는 Active oxide 함량은 낮은 반면, 상대적으로 안정성이 높은 Free oxide의 함량이 높았다. 따라서 논토양 종류별 메탄배출은 벼 재배기간중 산화환원전위와 토양중 Geothite, Hematite 등과 같은 메탄산화제의 함량에 영향을 받는 것으로 나타났다.

폴리설폰 중공사막 모듈을 이용한 자동차 연료용 고순도 바이오메탄 분리공정 연구 (Membrane Process Using Polysulfone Hollow Fiber Membranes for Vehicle Fuel Production from Bio-Methane Mixture)

  • 김지상;공창인;박보령;김정훈
    • 멤브레인
    • /
    • 제24권3호
    • /
    • pp.213-222
    • /
    • 2014
  • 자동차 연료용 바이오가스의 고순도 메탄 분리정제를 위해 2단 재순환 분리막 공정을 연구하였다. 2단 재순환 분리막 공정을 개발하기 위해 폴리설폰(Polysulfone) 중공사 모듈을 채택하여 이산화탄소, 메탄의 순수투과도를 측정하였다. 또한 모델 혼합가스를 대상으로 모듈의 메탄농도와 압력에 대해 투과실험을 수행하여 메탄의 농도와 회수율에 대한 연구를 수행하였다. 그 결과를 토대로 2단 재순환 분리막 파일럿 플랜트를 제작하였으며 현장에서 발생되는 바이오가스를 대상으로 공정변수에 대한 메탄 회수율과 농도에 관한 투과실험을 수행하였다. 제습기와 탈황설비 등의 전처리설비를 거쳐 가스 내의 수분을 500 ppm 이하, 바이오가스내의 황화수소 농도를 20 ppm 이하로 제거하였으며 그 정제된 혼합가스를 대상으로 파일럿 분리막 공정의 막면적비에 따른 운전결과를 알아보기 위하여 1, 2단의 막면적비가 각각 1:1, 1:3, 2:2가 되도록 구성하여 실험을 진행한 결과, 1단의 막면적은 $1m^2$로 동일하고 2단의 면적비가 $1m^2$에서 $3m^2$로 증가하였을 경우 최종 공급유량은 6.6 L/min에서 80.7 L/min로 그리고 메탄 회수율은 메탄순도 95%에서 47.1%에서 92.5%로 증가하였다. 또한, 막 면적비가 1:1로 동일한 경우 전체 면적이 2배로 증가함에 따라서 유량은 6.6 L/min에서 100.8 L/min로 회수율은 47.1에서 88.3%를 나타내었다. 1:3 면적비에서 공급유량이 증가하는 경우, 최종 메탄 순도는 감소하고 메탄 회수율은 증가하는 것을 알 수 있었다. 운전압력이 증가할수록 공급유량은 증가하고 회수율은 다소 감소하는 것으로 나타났다. 실험을 통해 유효막면적, 공급압력과 공급유량의 변화가 공정 성능향상에 중요한 영향을 미친다는 것을 확인하였다.

PERFORMANCE OF TWO-PHASE UASB REACTOR IN ANAEROBIC TREATMENT OF WASTEWATER WITH SULFATE

  • Oh, Sae-Eun
    • Environmental Engineering Research
    • /
    • 제12권1호
    • /
    • pp.8-15
    • /
    • 2007
  • Two phase UASB reactors for treating wastewater with sulfate were operated to assess the performance and competition of organics between sulfate reducing bacteria(SRB) and methane producing bacteria(MPB), and the change of characteristics of microorganisms. The reactors were fed in parallel with a synthetic wastewater of 4,000-5,000 mgCOD/L and sulfate concentration of $800-1,000\;mgSO_4/L$. In the MPR(methane producing reactor) and CR(control reactor), COD removal efficiencies were 90% and 60%, respectively, at the OLR(organic loading rate) of 6 gCOD/L, while the amount of biogas and methane content were 6.5 L/day and 80%, and 3 L/day and 50%, respectively. However, the portion of electron flow used by SRB at the OLR of 6 gCOD/L day in MPR and CR was 3% and 26%, respectively. This indicated that the increase of OLR of wastewater containing high sulfate like CR resulted in activity decrease and cell decay of MPB, while SRB was adapted immediately to new environment. The MPB activities in MPR and CR were 2 and $0.38\;kgCH_4-COD$/gVSS day at the OLR of 6 gCOD/L. This indicated hat SRB dominated gradually over MPB during long-term operation with wastewater containing sulfate as a consequence of outcompeting of SRB over MPB. In addition, the solution within AFR was maintained around pH 5.0, the MPB such as Methanothrix spp. which was very important to formation of granules was detached from the surface of granules due to the decrease of activity by limitation of substrate transportation into MPB. Therefore, a significant amount of sludge was washed out from the reactor.

목질 폐재와 가정용 쓰레기의 열-화학적 분해에 의한 고수율 메탄가스(대체연료)의 합성 (Synthesis of Methane-rich Gases(Alternative Energy) by Thermochemical Gasification from Waste Municipal and Lignocellulosic Materials)

  • 이병근;이선행
    • Journal of the Korean Wood Science and Technology
    • /
    • 제17권2호
    • /
    • pp.13-19
    • /
    • 1989
  • Two different quartz types of gasification reactor were used for pyrolysis and gasification of sawdust, ricestraw, ricehusk and municipal wastes which contain only cellulosics., operating at 1 atmospheric and vacuum pressure respectively. Also a stainless steel autoclave gasification reactor was used which is possible to use up to 100 atmospheric pressures and $800^{\circ}C$ of reaction temperature to complete pyrolysis and gasification reaction. The catalysts used in this reaction w- ere $K_2CO_3$, $Na_2CO_3$, Ni and Ni-$K_2CO_3$ as CO-Catalyst. The product gas mixtures were identified to be CO, $CO_2$, $C_3H_3$, $CH_4$ and $CH_3CHO$ etc. by Gas Chromatography and Mass Spectrometry. The pressurized gasification reaction shows significant increase in terms of methane composition and yield of product gases, comparing with those from unpressurized gasification reactions. The total volume of product gas mixtures amounts to 1600-1800ml per1gof waste of waste lignocellulosics or municipal waste, and the metane content of the gas mixtures reached to 40%, when $800^{\circ}C$ of reaction temperature and 100 atmospheric pressures with Ni-$K_2CO_3$ as CO-catalyst in the pressurized gasification reaction were used. This results show that the product gas mixtures containing 40% of methane call be used for alternative enegy source.

  • PDF

Evaluation of Biogas Production Performance and Archaeal Microbial Dynamics of Corn Straw during Anaerobic Co-Digestion with Cattle Manure Liquid

  • Zhang, Benyue;Zhao, Hongyan;Yu, Hairu;Chen, Di;Li, Xue;Wang, Weidong;Piao, Renzhe;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권4호
    • /
    • pp.739-747
    • /
    • 2016
  • The rational utilization of crop straw as a raw material for natural gas production is of economic significance. In order to increase the efficiency of biogas production from agricultural straw, seasonal restrictions must be overcome. Therefore, the potential for biogas production via anaerobic straw digestion was assessed by exposing fresh, silage, and dry yellow corn straw to cow dung liquid extract as a nitrogen source. The characteristics of anaerobic corn straw digestion were comprehensively evaluated by measuring the pH, gas production, chemical oxygen demand, methane production, and volatile fatty acid content, as well as applying a modified Gompertz model and high-throughput sequencing technology to the resident microbial community. The efficiency of biogas production from fresh straw (433.8 ml/g) was higher than that of production from straw silage and dry yellow straw (46.55 ml/g and 68.75 ml/g, respectively). The cumulative biogas production from fresh straw, silage straw, and dry yellow straw was 365 l-1 g-1 VS, 322 l-1 g-1 VS, and 304 l-1 g-1 VS, respectively, whereas cumulative methane production was 1,426.33%, 1,351.35%, and 1,286.14%, respectively, and potential biogas production was 470.06 ml-1 g-1 VS, 461.73 ml-1 g-1 VS, and 451.76 ml-1 g-1 VS, respectively. Microbial community analysis showed that the corn straw was mainly metabolized by acetate-utilizing methanogens, with Methanosaeta as the dominant archaeal community. These findings provide important guidance to the biogas industry and farmers with respect to rational and efficient utilization of crop straw resources as material for biogas production.

혐기성 유동층 생물 반응기와 새로운 모델의 AFPBBR에서 유기성폐수 처리시 Biogas 생성과 반응상수에 관한 연구 (A Study on the Kinetics and the Biogas Formation for Organic Wastewater Treatment in Anaerobic Fluidized-Bed Bioreactor and New Model AFPBBR)

  • 김재우;장인용
    • 한국환경보건학회지
    • /
    • 제19권2호
    • /
    • pp.23-33
    • /
    • 1993
  • The anaerobic digestion of organic synthetic wastewater in anaerobic fluidized bed bioreactor (AFBBR) and anaerobic fluidized packed bed bioreactor (AFPBBR) was studied. This study was conducted to evaluate efficiency and reliability of two reactor. Experiment was performed to find the effect of upflow rate with AFBBR and the height of packed bed with AFPBBR. As a result, this program obtained several conclusion. These are given as follows: As applied the upflow rate increased in AFBBR the produced volume of biogas increased, while the gas production and COD removal decreased at above 0.3 m$^3$/h. When a upflow rate is 0.4 m$^3$/h in AFBBR the volatile suspended solid (VSS) became significantly increased. At an organic loading rate from 0.1 to 0.4 of upflow rate in AFBBR, the methane yield was 1.5584 m$^3$CH$_4$/kgCOD removed, and the observed cell yield coefficient was 0.0933 gVSS/gCOD. In case of AFPBBR, the results showed also that 20 cm of height of packed bed was superior to other in the aspect ot biogas production, the content of methane and COD removal. At 20 cm of height, the profile of microorganisms was stable, while at 30 cm the VSS of effluent became higher than AFBBR. Though COD removal of AFPBBR increased with packed bed, COD removal deteriorate with over packing because the loss of pressure became higher in the reactor. At an organic loading rate from 20 to 40 cm of packed bed in-AFPBBR, the methane yield was 2.5649 m$^3$CH$_4$/kgCOD removed, and the observed cell yield coefficient was 0.0506 gVSS/gCOD. Based upon the results obtained, it is suggested that AFBBR and AFPBBR is the most effective conditions at 0.3 m3/h of upflow rate, the 20cm of packed bed, respectively. The rate constant are summarized as follow:

  • PDF

메탄발효 소화액 시용이 벼 생육과 식미에 미치는 영향 (Influence of Fertilizing Methane Fermentation Digested Sludge to Rice Paddy on Growth of Rice and Rice Taste)

  • 류찬석;이충근;우메다 미키오;이승규
    • Journal of Biosystems Engineering
    • /
    • 제34권4호
    • /
    • pp.269-277
    • /
    • 2009
  • In this research, the vegetation growth and rice taste of the liquid fertilizer applied fields (LF) were compared with those of chemical fertilizer applied fields(CF) in order to confirm the possibility of methane fermentation digested sludge as liquid fertilizer using precision agriculture and remote sensing technology. In panicle initiation stage, the vegetation growth at LF was 60%~80% of it at CF and there were significant difference of nitrogen contents between CF and LF. The estimation model of nitrogen contents was established by GNDVI (R=0.607, RMSE=$1.04\;g/m^2$, n=36, p<0.01). In heading stage, vegetation growth at LF went close to it at CF as ratio of 80%~95%. The nitrogen content estimation model was also established (R=0.650, RMSE=$1.73\;g/m^2$, n=35, p<0.01) and there were significant difference of spatial variability between LF and CF. There were not significant difference of rice taste and it's elements, when three samples, which were more than twice of standard deviation, were excepted. The protein contents estimation model using GNDVI of before harvesting (R=0.700, RMSE=0.470%, n=29, p<0.01) were more suitable to predict the protein contents at harvesting comparing with it of heading stage(R=0.610, RMSE=0.521%, n=29, p<0.01).

전이금속이 담지된 세리아의 메탄 산화 반응에 대한 연구 (A Study of Methane Oxidation over Transition Metal (TM)/CeO2 (TM=Ni, Co, Cu, Fe))

  • 안기용;정용재;이종호
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.346-352
    • /
    • 2012
  • The properties of methane oxidation were studied in this research over transition metal containing $CeO_2$ (TM/$CeO_2$, TM=Ni, Co, Cu, Fe) with TM content of 5 wt. % at atmospheric pressure. The characteristics of catalysts were investigated by various characterization techniques, including XRD, GC, SEM and EPMA analyses. The catalytic tests were carried out in a fixed Rmix ratio of 1.5 ($CH_4/O_2$) in a fixed-bed reactor operating isothermally at atmospheric pressure. Only the Ni/$CeO_2$ catalysts showed syngas production above $400^{\circ}C$ via typical partial oxidation reaction whereas other catalysts induced complete oxidation resulting in the production of $CO_2$ and $H_2O$ in whole reaction temperature range. From the quantitative analysis on carbon deposition after catalytic tests, Cu/$CeO_2$ was found to show the highest resistance on carbon deposition. Therefore Cu can be proposed as an efficient catalyst element which can be combined with a conventional Ni-based SOFC anode to enhance the carbon tolerance.

Ni 촉매 상에서 Power to Gas (P2G) 기술의 CO2 메탄화 반응에 관한 연구 (A Study on the CO2 Methanation in Power to Gas (P2G) over Ni-Catalysts)

  • 염규인;서명원;백영순
    • 한국수소및신에너지학회논문집
    • /
    • 제30권1호
    • /
    • pp.14-20
    • /
    • 2019
  • The power to gas (P2G) is one of the energy storage technologies that can increase the storage period and storage capacity compared to the existing battery type. One of P2G technologies produces hydrogen by decomposing water from renewable energy (electricity) and the other produces $CH_4$ by reacting hydrogen with $CO_2$. The objective of this study is the reaction of $CO_2$ methanation which synthesized methane by reacting carbon dioxide and hydrogen. The effect of $CO_2$ conversion and $CH_4$ selectivity on reaction temperature, pressure, and methane contents over 40% Ni catalyst was mainly investigated throughout this study. As a result, the activity of this catalyst appeared to be the highest in $CH_4$ yield at around $400^{\circ}C$ and the selectivity of $CH_4$ increased with increasing reaction pressure. The methane content was not significantly influenced below 3% of all componets. As the space velocity increases from 10,000 to 30,000/hr, the $CO_2$ conversion rate tends to decrease.

Electrostatic Charging and Substrate Seeding in Gas Phase Synthesis of Nanocrystalline Diamond Powder

  • Cho, Jung-Min;Lee, Hak-Joo;Choi, Heon-Jin;Lee, Wook-Seong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.418-418
    • /
    • 2012
  • Synthesis of nanocrystalline diamond powder was investigated via a gas-to-particle scheme using the hot filament chemical vapor deposition. Effect of substrate surface seeding by nano diamond powder, and that of the electrical conductance of the substrate were studied. The substrate temperature, methane content in the precursor gas, filament-substrate distance and filament temperature were $670^{\circ}C$, 5% methane in hydrogen, 10 mm and $2400^{\circ}C$, respectively. The powder formation by gas-to-particle mechanism were greatly enhanced by the substrate seeding by the nano diamond powder. It was attributed to the removal of the electrostatic force between the substrate and the seeded nano diamond particle by the thermal electron shower from the hot filament, via the depolarization of the substrate surface or the attached diamond powder and subsequent levitation into the gas phase to serve as the gas-phase nucleation site. The powder formation was greatly favoured by the conducting substrate relative to the insulating substrate, which proved the actual effect of the electric static force in the powder formation.

  • PDF