• Title/Summary/Keyword: Methane ($CH_4$)

Search Result 732, Processing Time 0.026 seconds

Distribution of Gas Extruded from Sanitary Landfill (쓰레기 매립지에서 대기중에 유출하는 가스 분포)

  • 이해승;이찬기
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.63-72
    • /
    • 1997
  • This study presents a surveying of methane and carbon dioxide at sanitary landfills. The following results are obtained. (1) The majority of methane and the half of carbon dioxide pour out from vertical gas vents. (2) The quantity of carbon dioxide in cove. soil was greater than methane. (3) Even though gas extrusion in side slop area was small, the quantity of gas extrusion in side slop area was much greater than in coversoil area as especially carbon dioxide rate. (4) As were carried raw refuse layer, methane extrusion was trace, but carbon dioxide was large. (5) Gas extrusion quantity were changed by the compaction of soil, and the operating area of refuse. (6) Carbon dioxide portioned much larger in the whole landfill, but methane portioned much larger in gas vent and coversoil.

  • PDF

Laser methane detector-based quantification of methane emissions from indoor-fed Fogera dairy cows

  • Kobayashi, Nobuyuki;Hou, Fujiang;Tsunekawa, Atsushi;Yan, Tianhai;Tegegne, Firew;Tassew, Asaminew;Mekuriaw, Yeshambel;Mekuriaw, Shigdaf;Hunegnaw, Beyadglign;Mekonnen, Wondimeneh;Ichinohe, Toshiyoshi
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1415-1424
    • /
    • 2021
  • Objective: Portable laser methane detectors (LMDs) may be an economical means of estimating CH4 emissions from ruminants. We validated an LMD-based approach and then used that approach to evaluate CH4 emissions from indigenous dairy cows in a dryland area of Ethiopia. Methods: First, we validated our LMD-based approach in Simmental crossbred beef cattle (n = 2) housed in respiration chambers and fed either a high- or low-concentrate diet. From the results of the validation, we constructed an estimation equation to determine CH4 emissions from LMD CH4 concentrations. Next, we used our validated LMD approach to examine CH4 emissions in Fogera dairy cows grazed for 8 h/d (GG, n = 4), fed indoors on natural-grassland hay (CG1, n = 4), or fed indoors on Napier-grass (Pennisetum purpureum) hay (CG2, n = 4). All the cows were supplemented with concentrate feed. Results: The exhaled CH4 concentrations measured by LMD were linearly correlated with the CH4 emissions determined by infrared-absorption-based gas analyzer (r2 = 0.55). The estimation equation used to determine CH4 emissions (y, mg/min) from LMD CH4 concentrations (x, ppm m) was y = 0.4259x+38.61. Daily CH4 emissions of Fogera cows estimated by using the equation did not differ among the three groups; however, a numerically greater milk yield was obtained from the CG2 cows than from the GG cows, suggesting that Napier-grass hay might be better than natural-grassland hay for indoor feeding. The CG1 cows had higher CH4 emissions per feed intake than the other groups, without significant increases in milk yield and body-weight gain, suggesting that natural-grassland hay cannot be recommended for indoor-fed cows. Conclusion: These findings demonstrate the potential of using LMDs to valuate feeding regimens rapidly and economically for dairy cows in areas under financial constraint, while taking CH4 emissions into consideration.

Partial Oxidation of Methane over CeO2 Catalyst

  • Rho, Hyun-Seog;Jun, Ki-Won;Baek, Seung-Chan;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.799-803
    • /
    • 2002
  • Partial oxidation of methane has been conducted over $CeO_2$and it has been found that $CeO_2$has an extraordinary catalytic activity in the reaction. Its activity was strongly dependent on the $CH_4/CO_2$ ratio. Total combustion was dominant with stoichiometric feed ratio$(CH_4/O_2=$ 2.0) but partial oxidation was achieved between the $CH_4/O_2$ ration of 3.8 4.3 and the period depended upon the feed composition. The proposed raaction mechanism it that oxygen vacancies in raduced deria are supplied with oxygen molecules from the reactant, and then activate adsorbed oxygen, followed by releasing activated axygen species reacting with methane to produce $H_2$ and CO.

Effects of $CO_2$ and $O_2$ Addition on Methane Dry Reforming Using Arc-Jet Plasma Reactor (아크제트 플라즈마를 이용한 메탄건식개질 반응에서 $CO_2$$O_2$ 첨가의 영향)

  • Hwang, N.K.;Cha, M.S.;Song, Y.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.47-53
    • /
    • 2008
  • The reaction mechanism of methane dry reforming has been investigated using an arc-jet reactor. The effects of input power, $CO_2/CH_4$ and added $O_2$ were investigated by product analysis, including CO, $H_2$, $C_{2}H_{Y}$ and $C_{3}H_{Y}$ as well as $CH_4$ and $CO_2$. In the process, input electrical power activated the reactions between $CH_4$ and $CO_2$ significantly. The increased feed ratio of the $CO_2$ to $CH_4$ in the dry reforming does not affect to the $CH_4$ conversion. but we could observe increase in CO selectivity together with decreasing $H_2$ generation. Added oxygen can also increase not only CO selectivity but also $CH_4$ conversion. However, hydrogen selectivity was decreased significantly due to a increased $H_{2}O$ formation.

  • PDF

Effects of Cellulase Supplementation on Nutrient Digestibility, Energy Utilization and Methane Emission by Boer Crossbred Goats

  • Wang, Lizhi;Xue, Bai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.2
    • /
    • pp.204-210
    • /
    • 2016
  • This study examined the effect of supplementing exogenous cellulase on nutrient and energy utilization. Twelve desexed Boer crossbred goats were used in a replicated $3{\times}3$ Latin square design with 23-d periods. Dietary treatments were basal diet (control, no cellulase), basal diet plus 2 g unitary cellulase/kg of total mixed ration dry matter (DM), and basal diet plus 2 g compound cellulase/kg of total mixed ration DM. Three stages of feeding trials were used corresponding to the three treatments, each comprised 23 d, with the first 14 d as the preliminary period and the following 9 d as formal trial period for metabolism trial. Total collection of feces and urine were conducted from the 4th d of the formal trial, and gas exchange measures were determined in indirect respiratory chambers in the last 3 d of the formal trial. Results showed that cellulase addition had no effect (p>0.05) on nutrient digestibility. Dietary supplementation of cellulase did not affect (p>0.05) N intake and retention in goats. Gross energy (GE) intake, fecal energy and urinary energy excretion, heat production were not affected (p>0.05) by the cellulase supplementation. Total methane emission (g/d), $CH_4$ emission as a proportion of live weight or feed intake (DM, organic matter [OM], digestible DM or digestible OM), or $CH_4$ energy output ($CH_4$-E) as a proportion of energy intake (GE, digestible energy, or metabolizable energy), were similar (p>0.05) among treatments. There was a significant (p<0.001) relationship between $CH_4$ and live weight (y = 0.645x+0.2, $R^2$ = 0.54), $CH_4$ and DM intake (y = 16.7x+1.4, $R^2$ = 0.51), $CH_4$ and OM intake (y = 18.8x+1.3, $R^2$ = 0.51) and $CH_4$-E and GE intake. Results from this study revealed that dietary supplementation of cellulase may have no effect on nutrient digestibility, nitrogen retention, energy metabolism, and methane emission in goat.

Influence of Diet on Methane and Nitrous Oxide Emissions from Cattle Manure

  • Nampoothiri, Vinu M.;Mohini, Madhu;Thakur, S.S.;Mondal, Goutham
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.187-193
    • /
    • 2015
  • Livestock is one of the major contributors of greenhouse gases (GHGs). It accounts for 14.5% of the global GHGs emissions like methane ($CH_4$) from enteric fermentation and manure, nitrous oxide ($N_2O$) from manure and fertilizer. Since enteric emissions are a major contributor of $CH_4$ than that of manure emissions hence primary efforts were made on reducing enteric emissions, with minor attention to dung emissions. Many researches were conducted by dietary manipulation to mitigate enteric $CH_4$ emission. However dietary manipulation also had significant effects on manure GHGs emissions too. Several works proved that manure $CH_4$ emissions were increased with high level of concentrate supplementation despite reduction in enteric $CH_4$. Fat and CP content of the diet has shown inconsistent results on manure $CH_4$ emissions. Amount of concentrate in the diet has shown little effect whereas dietary CP content exhibited conflicting effects on manure $N_2O$ emissions.

The Addition Effect of on Methane Ignition behind Reflected Shock Waves

  • Ji, Seong Bae;Kim, Gil Yeong;Sin, Gwan Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.957-958
    • /
    • 2000
  • The addition effect of $CH^3Br$ on the ignition of methane was investigated in the temperature range of 1537-1920 K behind reflected shock waves. The ignition delay times were measured by the sudden increase of pres-sure and OH emission in the $CH_4-O_2-Ar$ system containing small amount of $CH_3Br.$ The delay times of mix-tures with $CH_3Br$ were shorter than those without $CH_3Br.$ The promotion of ignition by $CH_3Br$ was caused by the relative fast decomposition rate in additive. To clarify the addition effect of $CH_3Br$ from the viewpoint of the reaction mechanism, computational analyses were performed in $CH_4-CH_3Br-O_2-Ar$ mixtures.

$CH_4$ Gas Sensor Utilizing Pd-SiC Schottky Diode (Pd-SiC 쇼트키 다이오드를 이용한 $CH_4$ 가스센서)

  • 김창교;이주헌;이영환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.163-166
    • /
    • 1998
  • The mechanism of methane sensing by Pd-SiC diode was investigated over the temperature range of 400~$600^{\circ}C$. The effects or methane gas reaction on the parameters such as barrier height, initial rate of methane gas reaction are investigated. The methane gas reaction kinetics on the device are also discussed. The physical and chemical mechanism responsible for methane detection are proposed. Analysis of steady-state reaction kinetics using I-V method confirmed that methane gas reaction processes are responsible for the barrier height change in the diode.

  • PDF

Study on Production Characteristic of Methane Gas in Anaerobic Digestion Reactor according to Input Type of Food Waste (음식물쓰레기 주입형태에 따른 혐기성소화조의 메탄가스 발생특성에 관한 연구)

  • Lee, Young-Hyeong;Park, Sung-Hyun;Sung, Nak-Chang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.4
    • /
    • pp.55-60
    • /
    • 2001
  • This study was performed to investigate production characterisitic of methane gas in anaerobic digestion reactor according to input type of food waste. In the production rates of $CH_4$ gas per g $VS_{added}$, reactor R2, R3, R4, R5, and R6 in which sewage sludge and food waste were combined with mixing ratio of 1:0.1, 1:0.3, 1:0.5, 1:1, and 1:2 showed 85mL, 62mL, 67mL, 72mL, and 73mL $CH_4/g$ $VS_{added}$ which were much more than sewage sludge digestion alone. Methane content according to crushing size of food waste respectively showed 51.1%(raw food), 53.1%(2~4mm), and 50.6%(<2mm), In case of methane production according to washing of food waste, R12(7~8 times washing) showed the highest methane production.

  • PDF

Measurement of Methane Production from Ruminants

  • Bhatta, Raghavendra;Enishi, Osamu;Kurihara, Mitsunori
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1305-1318
    • /
    • 2007
  • On a global scale agriculture and in particular enteric fermentation in ruminants is reported to produce about one fourth (21 to 25%) of the total anthropogenic emissions of methane ($CH_4$). Methane is produced during the anaerobic fermentation of hydrolyzed dietary carbohydrates in the rumen and represents an energy loss to the host besides contributing to emissions of greenhouse gases into the environment. However, there appears to be uncertainty in the $CH_4$ estimation from livestock due to the limited availability of data to document the variability at the farm level and also due to the significant impact of diet on the enteric $CH_4$ production. The methane mitigation strategies require robust prediction of emissions from rumen. There are many methods available which would be suitable for measuring $CH_4$ produced from the various stages of animal production. However, several factors need to be considered in order to select the most appropriate technique like the cost, level of accuracy required and the scale and design of the experiments to be undertaken. Selection of any technique depends on the accuracy as each one has its advantages and disadvantages. Screening of mitigation strategies may be evaluated using individual animal before large-scale trials on groups of animals are carried out. In this review various methods for the estimation of methane production from ruminants as well as for the determination of methane production potential of ruminant feeds are discussed. The advantages and disadvantages of the methods starting from respiration chamber, ventilated hood, facemask, sulphur hexafluoride ($SF_6$) tracer technique, prediction equations and meteorological methods to in vitro methods are detailed.