• Title/Summary/Keyword: Methacrylate

Search Result 1,260, Processing Time 0.033 seconds

A Study on the Physical Characteristics of Acryl Concretes for Thin Bridge Deck Pavements (박층 교면포장용 아크릴 콘크리트의 물리적 특성 연구)

  • Kim, Tae-Woo;Kim, Dae-Young;Nguyen, Manh Tuan;Lee, Hyun-Jong
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.1-11
    • /
    • 2009
  • This study focuses on evaluating the applicability of an acryl based polymer concrete to the thin bridge deck pavements. The acryl concrete developed in this study is composed of Methyl Methacrylate(MMA) resin, benzol peroxide and fillers. To study the effects of the types and amounts of the components on the physical characteristics of the acryl concrete, viscosity, compressive strength and bending tests were conducted. The optimum mixture design was then determined based on the testing results. Several different types of laboratory tests, such as water and chlorine ion penetration tests, shrinkage and thermal coefficients tests, and tensile bonding strength tests were performed for the optimum acryl concrete and conventional cement concrete. The testing results show that water and chroline ion resistance, bonding strength between acryl and cement concrete and crack resistance of the acryl concrete is better than those of the conventional cement concrete. There are shortcomings that the conventional acryl concrete has a higher shrinkage and thermal coefficients. However, it was confirmed that to use newly developed rubberized MMA resin in this study reduces the crack resistance with substantially increased ductility.

  • PDF

Determination of Processing Parameters Affecting the Conversion and Thermal Stability of Photocurable Acrylate-based Binder (아크릴계 광바인더의 전환율과 열안정성 향상을 위한 공정변수 결정)

  • Kim, Byungchul;Seo, Dong Hak;Chae, Heon-Seung;Shin, Seunghan
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.18-22
    • /
    • 2012
  • Photocurable binder for a transparent glass fiber composite was prepared with alicyclic methacrylate and fluorene-based diacrylate. ANOVA (analysis of variance) analysis was used to know main factors affecting the conversion of photocurable binder. It showed radiation intensity and photoinitiator (PI) concentration were main factors. The conversion of photocurable binder was simply increased with radiation intensity. Its increment however was abated with increasing PI concentration. We found that average conversion of the binder measured by FTIR-ATR was 87% when it was exposed to $5J/cm^2$ of UV dose with 5 wt% of PI. Oxime ester type PI was very effective to get a high degree of conversion, but it caused a yellowing problem. Owing to post-baking process, UV cured film showed an improved thermal stability by increase of conversion and removal of volatile organic compounds. TG% at $260^{\circ}C$ of film cured with 5 wt% of PI (TPO+MBF) and $5J/cm^2$ of UV radiation increased from 95.4 to 99.0% by post-baking at $230^{\circ}C$ for 5 min.

Fluorination of Polymethylmethacrylate (PMMA) Film and Its Surface Characterization (폴리메틸메타아크릴레이트(PMMA) 필름의 불소화 및 그 표면특성)

  • Jung, Min-Jung;Lim, Jae-Won;Park, In-Jun;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.317-322
    • /
    • 2010
  • In this study, poly(methyl methacrylate) (PMMA) was treated with changing mixing ratios of $F_2$ and $O_2$ using oxyfluorination method for hydrophilic modification of PMMA film. For the characterizations of oxyfluorinated PMMA surface, contact angle, surface free energy, X-ray photoelectron spectroscopy (XPS) and optical transmittance (UV-vis) were carried out. After the oxyfluorination, PMMA surface became more hydrophilic showing the decrease of water contact angle from $69^{\circ}$ to $44^{\circ}$. So, surface free energy of oxyfluorinated PMMA film was increased from 46 to $58\;mN\;m^{-1}$. These results are attributed to hydrophilic functional groups such as hydroxyl group formed oxyfluorination method on the PMMA surface. From XPS results, it was confirmed that O/C concentration ratio on the surface of PMMA was increased, the amount of C-OH bonding which shows hydrophilicity was also largely increased from 6.7 to 24.8% with increasing fluorine partial-pressure via the oxyfluorination, The oxyfluorination conditions, room temperature, 1 bar with one mixture ratio of $F_2$ to $O_2$ had little influence on optical transmittance properties of PMMA film but enhanced its surface hydrophilicity. This result suggests that oxyfluorination method could be useful to change hydrophobic PMMA surface to hydrophilic.

Hydrogel Synthesis using Glycosyl Methacrylate and Acrylate: 1. A Study on Chemo-Enzymatic Synthesis of Sorbitan Acrylate (배당화 메타크릴레이트와 아크릴에리트를 이용한 하이드로겔의 합성: I. 솔비탄 아크릴레이트의 화학.효소적 합성에 관한 연구)

  • 박돈희;임근길;정귀택;변기영;김인흥;이광연;김해성
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.222-228
    • /
    • 2003
  • This study was performed to research a chemo-enzymatic synthesis of sorbitan acrylate. It w as firstly to determine the optimum conditions for D-sorbitol cyclic reaction in the presence of p-toluenesulfonic acid (p-TSA) as catalyst material. It was secondly to find the optimum conditions for sorbitan acrylate synthesis using immobilized lipase Novozym 435 in t-butanol from its materials. The maximum yield of 1,4-sorbitan synthesis were obtained approximately 90% (w/w) at 13$0^{\circ}C$ and 200 mmHg vacuum pressure with 1% (w/w) p-TSA after 150 min reactin time on our experimental system. The product from optimum condition was less color than those obtained at higher temperatures and minimized byproduct and unreacted D-sorbitol. Sorbitan acrylate was synthesized to around 63.5% conversion of 1,4-sorbitan. The experimental optimum condition was found at 5$0^{\circ}C$, atmospheric pressure, 3% (w/v) Novozym 435, 50 g/L 1,4-sorbitan of initial reactant concentration, and 1:3 molar ratio of 1,4-sorbitan to acrylic acid.

Cell Patterning on Various Substrates Using Polyelectrolyte Multilayer and Microstructure of Poly(Ethylene Glycol) (다양한 기판 위에서 고분자 전해질 다층 막과 폴리에틸렌글리콜 미세 구조물을 이용한 세포 패터닝 방법)

  • Shim, Hyun-Woo;Lee, Ji-Hye;Choi, Ho-Suk;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1100-1106
    • /
    • 2008
  • In this study, we presented rapid and simple fabrication method of functionalized surface on various substrates as a universal platform for the selective immobilization of cells. The functionalized surface was achieved by using deposition of polyelectrolyte such as poly(allyamine hydrochloride) (PAH), poly(diallyldimethyl ammonium chloride) (PDAC), poly(4-ammonium styrene sulfonic acid) (PSS), poly(acrylic acid) (PAA) and fabrication of poly(ethylene glycol) (PEG) microstructure through micro-molding in capillaries (MIMIC) technique on each glass, poly(methyl methacrylate) (PMMA), polystyrene (PS) and poly(dimethyl siloxane) (PDMS) substrate. The polyelectrolyte multilayer provides adhesion force via strong electrostatic attraction between cell and surface. On the other hand, PEG microstructures also lead to prevent non-specific binding of cells because of physical and biological barrier. The characteristic of each modified surface was examined by using static contact angle measurement. The modified surface onto several substrates provides appropriate environment for cellular adhesion, which is essential technology for cell patterning with high yield and viability in the micropatterning technology. The proposed method is reproducible, convenient and rapid. In addition, the fabrication process is environmentally friendly process due to the no use of harsh solvent. It can be applied to the fabrication of biological sensor, biomolecules patterning, microelectronics devices, screening system, and study of cell-surface interaction.

PMMA MICROSPHERES (ARTECOLL$^{(R)}$) INJECTION FOR NASAL RIDGE AUGMENTATION IN THE ORTHOGNATHIC SURGERY (악교정수술환자에서 폴리메틸메터크릴레이트(아테콜$^{(R)}$) 주입을 통한 융비술)

  • Ok, Yong-Ju;Kim, Myung-Jin;Paeng, Jun-Young;Myoung, Hoon;Hwang, Soon-Jung;Choi, Jin-Young;Lee, Jong-Ho;Choung, Pill-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.4
    • /
    • pp.329-334
    • /
    • 2005
  • Polymethyl-methacrylate(PMMA; Artecoll$^{(R)}$) microspheres suspended 1 : 3 in a 3.5% collagen solution has been used as an injectable implant for long lasting correction of wrinkles and minor skin defects. The patients with mandibular prognathism have increased necessity for nasal augmentation. Usually these patients usually get an additional rhinoplasty after orthognathic surgery. The purpose of this study is to evaluate the result of PMMA injection for nasal ridge augmentation simultaneously with the orthognathic surgery. PMMAs were injected to the nasal dorsum of 13 patients with mandibular prognathism to augment the nasal ridge at the end of the orthognathic surgery. The cephalometric X-ray and clinical facial photograph were taken at 2, 4 and 6 months after operation. Using S-N line, we calculated the change of soft tisuue on the nasal ridge and also investigated the degree of patients satisfaction at 6 months after operation. Most of the patients were satisfied with their nasal ridge height status from moderate to good degree. The average amount of nasal ridge augmentation was $1.4{\pm}0.5$ mm immediately after operation, $1.2{\pm}0.4$ mm at 2 months after operation. The postoperative nasal ridge height seemed to be remained stable after 2 months. Intraoperative PMMA injection is considered to be simple and effective technique which can be used for the minor augmentation of nasal ridge in the orthognathic patients.

EFFECT OF TIME AND TEMPERATURE ON THE MARGINAL FIT OF PROVISIONAL RESIN CROWN DURING POLYMERIZATION (임시 수복물 중합시 시간과 중합온도가 변연 적합도에 미치는 효과)

  • Youn Seung-Hwan;Oh Nam-Sik;Kim Il-Kyu;Oh Sung-Seop;Choi Jin-Ho;Kim Wang-Sik;Rim Young-Il
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.5
    • /
    • pp.514-525
    • /
    • 2001
  • The purpose of this study was to compare the marginal fit of provisional restorations by differentiating the removal time and setting temperature during resin polymerization. After mixing autopolymerizing methyl methacrylate resin, the material was placed in a preformed resin shell crown. The crown was seated on a die with 1mm shoulder margin. Crowns were removed after 3, 4, 5, 6 minutes and polymerization was continued under the following conditions : $25^{\circ}C$ air, $30^{\circ}C,\;40^{\circ}C,\;50^{\circ}C,\;60^{\circ}C,\;70^{\circ}C$ water. After polymerization. the crown was sectioned. The marginal & occlusal discrepancies were measured. The mean marginal discrelpancies at 3 minutes, 4 minutes, 5 minutes and 6 minutes of removing time were $96.6{\mu}m.\;84.6{\mu}m,\;86.7{\mu}m$ and $105.6{\mu}m$. The mean occlusal discrepancies at 3 minutes, 4 minutes, 5 minutes and 6 minutes of removing time were $106.7{\mu}m,\;89.3{\mu}m,\;98.6{\mu}m$ and $127.7{\mu}m$. There was significant difference between 4 minutes group and 6 minutes group in occlusal discrepancies. The mean marginal & occlusal discrepancies for crowns polymerized in $25^{\circ}C$ air were $98.2{\mu}m$ and $124.1{\mu}m$. The crowns polymerized in $50^{\circ}C$ water demonstrated the smallest marginal & occlusal. discrepancies. The mean value of marginal & occlusal discrepancies in $50^{\circ}C$ water were $73.1{\mu}m$ and $77.5{\mu}m$. These values were smaller than that of $25^{\circ}C$ air. There were significant differences in the occlusal discrepancies between $25^{\circ}C$ air and water conditions of $50^{\circ}C$ water (${\alpha}=0.05$) but. no significant difference in marginal discrepancies. There was no significant difference in the interaction between time and temperature. 4 minutes waiting time & $50^{\circ}C$ water polymerizing condition produces the best fit at the margin of the provisional crown.

  • PDF

Fabrication and Characterization of UV-curable Conductive Transparent Film with Polyaniline Nanofibers (폴리아닐린 나노섬유를 이용한 광경화형 전도성 투명필름의 제조 및 특성)

  • Kim, Sung-Hyun;Song, Ki-Gook
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.531-535
    • /
    • 2012
  • Conductive polyaniline (PANI) nanofibers in UV-curable resin were used for a transparent conductive film. The emeraldine-salt PANI (ES-PANI) nanofibers were prepared by chemical oxidation polymerization of aniline, which could be changed into emeraldine-base PANI by dedoping. EB-PANI nanofibers as a precursor for conductive fillers were thereby transformed into re-dpoed PANI (rES-PANI) by dodecylbenzenesulfonic acid in the UV-curable resin solution. rES-PANI nanofibers have high conductivity and long-term stability in the solution without a defect of nanostructure. The resulting conductive resin solution was proved to be highly stable where no precipitation of rES-PANI fillers was observed over a period of 3 months. The transparent film was spin-casted on a poly(methyl methacrylate) sheet of thickness ca. $5{\mu}m$. A surface resistance of $6.5{\times}10^8{\Omega}/sq$ and transmittance at 550 nm of 91.1% were obtained for the film prepared with a concentration of 1.4 wt% rES-PANI nanofibers in the solution. This transformation process of rES-PANI from ES-PANI by dedoping-redoping can be an alternative method for the preparation of an antistatic protection film with controllable surface resistance and optical transparencies with the PANI concentration in UV-curable solution.

Design and Properties of Laminating Waterborne PSA for Eco-friendly Flexible Food Packaging (식품연포장용 라미네이트 수성 감압점착제의 친환경적 적용에 대한 연구)

  • Lee, Jin-Kyoung;Shim, Myoung-Sik;Chin, In-Joo
    • Journal of Adhesion and Interface
    • /
    • v.17 no.2
    • /
    • pp.49-55
    • /
    • 2016
  • In this study, we designed an environment friendly, water-based adhesive using the acrylic emulsion method as a replacement for solvent-based adhesives, which are most commonly used in layered laminates for flexible food packaging. We designed adhesives with different combinations of anionic, non-ionic, and phosphoric ester surfactants, and with different concentrations of chain transfer agent (CTA). We also examined the effect of the degree of cross-linking by synthesizing and comparing 8 test group adhesives with different types of functional monomers. Additionally, we synthesized 2 other test group pressure-sensitive adhesives (PSA) using styrene/alpha-methyl styrene/acrylic acid (SAA) semipolymer dispersing agents (with molecular weights of 13,000 g/mol and 8,600 g/mol, respectively) to replace the conventional surfactants. We evaluated whether the 10 test group pressure-sensitive adhesives met the basic physical property criteria required for flexible food packaging by carrying out a physical analysis of their glass transition temperature (Tg), particle size, adhesion, and molecular weight. In our test, 2 test group adhesives manufactured with the combination of anionic and non-ionic surfactants, CTA concentration of 0.2%, and functional monomers of hydroxyethyl acrylate (HEA) and glycidyl methacrylate (GMA) demonstrated molecular weight and flexibility suitable for flexible packaging, with low adhesiveness and small particle size.

Optimal combination of 3-component photoinitiation system to increase the degree of conversion of resin monomers (레진 모노머의 중합전환률 증가를 위한 3종 중합개시 시스템의 적정 비율)

  • Kim, Chang-Gyu;Moon, Ho-Jin;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.4
    • /
    • pp.313-323
    • /
    • 2011
  • Objectives: This study investigated the optimal combination of 3-component photoinitiation system, consisting of CQ, p-octyloxy-phenyl-phenyl iodonium hexafluoroantimonate (OPPI), and 2-dimethylaminoethyl methacrylate (DMAEMA) to increase the degree of conversion of resin monomers, and analyze the effect of the ratio of the photoinitiator to the co-initiator. Materials and Methods: Each photoinitiators (CQ and OPP) and co-initiator (DMAEMA) were mixed in three levels with 0.2 wt.% (low concentration, L), 1.0 wt.% (medium concentration, M), and 2.0 wt.% (high concentration, H). A total of nine groups using the Taguchi method were tested according to the following proportion of components in the photoinitiator system: LLL, LMM, LHH, MLM, MMH, MHL, HLH, HML, HHM. Each monomer was polymerized using a quartz-tungsten-halogen curing unit (Demetron 400, USA) for 5, 20, 40, 60, 300 sec and the degree of conversion (DC) was determined at each exposure time using FTIR. Results: Significant differences were found for DC values in groups. MMH group and HHM group exhibited greater initial DC than the others. No significant difference was found with the ratio of the photoinitiators (CQ, OPPI) to the co-initiator (DMAEMA). The concentrations of CQ didn't affect the DC values, but those of OPPI did strongly. Conclusions: MMH and HHM groups seem to be best ones to get increased DC. MMH group is indicated for bright, translucent color and HHM group is good for dark, opaque colored-resin.