• Title/Summary/Keyword: Meter-out control

Search Result 81, Processing Time 0.025 seconds

Topographical Changes in Torrential Stream After Dredging in Erosion Control Dam - Using Terrestrial LiDAR Data - (사방댐 준설이 계류의 지형변화에 미치는 영향 - 지상 LiDAR 자료를 이용하여 -)

  • Seo, Junpyo;Woo, Choongshik;Lee, Changwoo;Kim, Kyongha;Lee, HeonHo
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.3
    • /
    • pp.392-401
    • /
    • 2014
  • This research was carried out to understand the impact of mountainous torrent on topographical change of slope and sediment volume within a deposit line by dredging of soil erosion control dam. Terrestrial LiDAR surveys were conducted at dredged and non-dredged sites. Terrestrial LiDAR has an advantage on detecting topographical changes easily without demanding workmanship and technical skill for users. The distribution of erodible slope ($20^{\circ}-40^{\circ}$) was higher in non-dredged site than that of dredged site. However, the distribution was higher in dredged site than that of non-dredged site after rainy season. Erosion and deposition appeared regularly in a dredged site, but those occurred irregularly in the non-dredged site. The inflow of soil per square meter was 1.7 times higher in dredged site than that of non-dredged site after rainy season. The difference of rainfall in each site did not affect to soil erosion. The distribution of erodible slope was increased in dredged site than that of non-dredged site after rainy season due to inflow of soil from upper stream caused by dredging.

Quality Characteristics of Pear Jam with Added Ginger Powder (건조 방법을 달리한 생강가루를 첨가한 배잼의 품질 특성)

  • Rho, Jeong-Ok;Park, Hee-Jin;Lee, Young-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.2
    • /
    • pp.159-165
    • /
    • 2011
  • This study was carried out to investigate the quality characteristics of pear jam containing fresh ginger(G1) and ginger powders; dried ginger powder(G2), freeze-dried ginger powder(G3), and hot-air dried ginger powder(G4). The moisture, crude protein, and crude ash content of the control group were significantly higher than those of the experimental groups (p<0.001, p<0.05, p<0.01). The pH of the dried ginger powder added jam(G2) was the lowest(p<0.05). Texture profile analysis found that the dried ginger powder added jam(G2) had the highest firmness, consistency, cohesiveness, and resistance to flow/viscosity among all samples(p<0.001). Regarding the spread-meter value of the pear jam, the control group (G1) and hot air-dried ginger powder added jam(G4) had the highest values. The dried ginger power added jam(G2) had the lowest value among the samples(p<0.01). Regarding the color values of the pear jam, the control group(G1) had the highest L and b values. Hot-air dried ginger powder added jam(G4), on the other hand, had the lowest(p<0.001). The opposite was true for a value: hot-air dried ginger powder added jam(G4) had the highest. From the sensory evaluation, a positive trend was observed for the appearance of the dried ginger powder added jam(G2)(p<0.001). For sweetness, the dried ginger powder added jam(G2) had the highest value. A positive trend was observed for the overall acceptability of the dried ginger powder-added jam(G2)(p<0.001). Therefore, the dried ginger powder-added sample(G2) seemed to be the most appropriate to make pear jam with high acceptability.

Heat Insulation Characteristics of Multi Layer Materials for Greenhouse (시설원예용 조합형 다겹보온자재의 보온 특성)

  • Chung, Sung-Won;Kim, Dong-Keon;Lee, Suk-Gun;Nam, Sang-Heon;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.341-347
    • /
    • 2009
  • Experiments and computations were conducted to investigate the heat insulation characteristics of multi layer materials for cultivation greenhouse. In case of the experiments, measurements of temperature were carried out with a K-type thermocouples and data logger to research the heat transfer in the experimental module generated by the heat source. A thermal conductivity meter, QTM-500 based on modified transient hot wire method was used to measure the thermal conductivity of multi layer materials. The numerical analyses were performed by commercial code CFX-11 according to the variation of multi layer materials without air layer. The experimental results showed that the heat insulation of multi layer materials was higher than single layer materials by 50~90%. It was found that the effect of heat insulation was raised by the combination of multi layer materials.

Evaluation of Atopy and Its Possible Association with Indoor Bioaerosol Concentrations and Other Factors at the Residence of Children (초등학생 가정을 대상으로 한 바이오에어로졸 노출과 아토피와의 연관성 평가)

  • Ha, Jin-Sil;Jung, Hea-Jung;Byun, Hyae-Jeong;Yoon, Chung-Sik;Kim, Yang-Ho;Oh, In-Bo;Lee, Ji-Ho;Ha, Kwon-Chul
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.6
    • /
    • pp.406-417
    • /
    • 2011
  • Objectives: Exposure to bioaerosols in the indoor environment could be associated with a variety adverse health effects, including allergic disease such atopy. The objectives of this study were to assess children's exposure to bioaerosol in home indoor environments and to evaluate the association between atopy and bioaerosol, environmental, and social factors in Ulsan, Korea. Methods: Samples of viable airborne bacteria and fungi were collected by impaction onto agar plates using a Quick Take TM 30 and were counted as colony forming units per cubic meter of air (CFU/$m^3$). Bioaerosols were identified using standard microbial techniques by differential stains and/or microscopy. The environmental factors and possible causes of atopy based on ISAAC (International Study of Allergy and Asthma in Childhood) were collected by questionnaire. Results: The bioaerosol concentrations in indoor environments showed log-normal distribution (p < 0.01). Geometric mean (GM) and geometric standard deviation (GSD) of airborne bacteria and fungi in homes were 189.0 (2.5), 346.1(2.0) CFU/$m^3$, respectively. Indoor fungal levels were significantly higher than those of bacteria (p < 0.001). The concentration of airborne bacteria exceeded the limit recommended by the Korean Ministry of Environment, 800 CFU/$m^3$, in three out of 92 samples (3.3%) from 52 homes. The means of indoor to outdoor ratio (I/O) for airborne bacteria and fungi were 8.15 and 1.13, respectively. The source of airborne bacteria was not outdoors but indoors. GM of airborne bacteria and fungi were 217.6, 291.8 CFU/$m^3$ in the case's home and 162.0, 415.2 CFU/$m^3$ in the control's home respectively. The difference in fungal distributions between case and control were significant (p = 0.004) and the odds ratio was 0.996 (p = 0.027). Atopy was significantly associated with type of house (odds ratio = 1.723, p = 0.047) and income (odds ratio = 1.891, p = 0.041). Some of the potential allergic fungal genera isolated in homes were Cladosporium spp., Botrytis spp., Aspergillus spp., Penicillium spp., and Alternatia spp. Conclusions: These results suggest that there this should be either 'was little' meaning 'basically no significant association was found' or 'was a small negative' mean that an association was found but it was minor. It's a very improtant distinction. Association between airborne fungal concentrations and atopy and certain socioeconomic factors may affect the prevalence of childhood atopy.

Influence of DIF on Factors Associated with Growth of Young Watermelon(Citrullus vulgaris S.) Plant in Controlled Environments (수박의 초기 생장에 미치는 DIF의 영향)

  • 권성환
    • Journal of Bio-Environment Control
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 1996
  • For reducing planting distance in greenhouse grown watermelon(Citrullus vulgaris S.) this experiment was carried out to study the effect of DIF on stem elongation and growth. Day temperatures ranged from $25^{\circ}C$ to 35$^{\circ}C$ : night temperatures ranged from $25^{\circ}C$ to 35$^{\circ}C$ at 5$^{\circ}C$ interval. Stem elongation, leaf size, dry weight and flowering were influence by day and night temperatures. Stem elongation and length of internode decrease with increasing night temperature at same day temperature. The optimums for number of leaves categories was with day at 35$^{\circ}C$, and flower production was the lowest at $25^{\circ}C$. Total leaf area meter was maximized at 35/30(DT/NT), but for size pet one leave was the largest 25/25(DT/NT). Responses of leaf size per leaves were similar to that of internode length, with maximum day and night at $25^{\circ}C$. Total plant dry weight was the highest 35/30 (DT/NT) and minimum occurring at 25/30(DT/NT). The shoot/root ratios of dry weight Increased with day temperature up to 3$0^{\circ}C$ and were the highest with night at $25^{\circ}C$. Chlorophyll contents decreased with decreasing day and night temperature.

  • PDF

Development of the Revegetation Technology for the Ecological Restoration of the Steep Rock-exposed Slopes by PEC Methods (PEC공법을 활용한 급경사 암비탈면의 생태복원녹화 기술개발에 관한 기초적 연구)

  • Kim, Nam-Chun;Jung, Ji-Jun;Lee, Byung-Jun;Kim, Sung-Ho;Kim, Yeon-Mee;Bae, Sun-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.4
    • /
    • pp.98-109
    • /
    • 2004
  • This study was conducted to develop revegetation methods for the restoration of the steep slopes by recycling of bark compost and mushroom media. In general, bark compost and mushroom media can be used as soil media for the restoration works, because they can increase infiltration of rainfall and give enough porous to breathe and elongate for the root growth as well as environmental value. This experiment was carried out to know the effect of soil media composed by different ratio of mushroom media for the restoration of steep rock-exposed slopes, and to certificate how soil media(PEC) will be effective to germinate and grow for native plants. The main results of the study are summarized as follows; 1. In percent coverage, the soil media PEC1 is more valuable than PEC2. The seed mixtures recommended by Government of Transportation and Construction can be used at PEC1 and PEC2, but it will be more useful if the total amount of seed are reduced and seed mixtures are altered in a direction of native plants. 2. The soil media is under 20 mm tested by Yamanaka Hardiness Tester which is available for the seed germination and growth. 3. The surface cracks are not occurred in PEC1 and PEC2, but more than 30 cracks per 1 square meter are occurred at soil media which is constructed by normal soil-seed-fertilizer hydro-seeding methods. 4. The soil moisture contents are over 20 percent level during 15 day. Such moisture content in soil media will be effective for the plant growth. By using Terra-Control, PEC can maintain enough soil moisture. 5. The eroded soils from $60^{\circ}$ slopes by artificial rainfall with the intensity of 20 mm/hr in one day after seeding are estimated under 1%. By the results of erosion test, it comes to the conclusion that soil media of PEC can be adapted at steep rock exposed slopes.

Along and across-wind vibration control of shear wall-frame buildings with flexible base by using passive dynamic absorbers

  • Ivan F. Huergo;Hugo Hernandez-Barrios;Roberto Gomez-Martinez
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.15-42
    • /
    • 2024
  • A flexible-base coupled-two-beam (CTB) discrete model with equivalent tuned mass dampers is used to assess the effect of soil-structure interaction (SSI) and different types of lateral resisting systems on the design of passive dynamic absorbers (PDAs) under the action of along-wind and across-wind loads due to vortex shedding. A total of five different PDAs are considered in this study: (1) tuned mass damper (TMD), (2) circular tuned sloshing damper (C-TSD), (3) rectangular tuned sloshing damper (R-TSD), (4) two-way liquid damper (TWLD) and (5) pendulum tuned mass damper (PTMD). By modifying the non-dimensional lateral stiffness ratio, the CTB model can consider lateral deformations varying from those of a flexural cantilever beam to those of a shear cantilever beam. The Monte Carlo simulation method was used to generate along-wind and across-wind loads correlated along the height of a real shear wall-frame building, which has similar fundamental periods of vibration and different modes of lateral deformation in the xz and yz planes, respectively. Ambient vibration tests were conducted on the building to identify its real lateral behavior and thus choose the most suitable parameters for the CTB model. Both alongwind and across-wind responses of the 144-meter-tall building were computed considering four soil types (hard rock, dense soil, stiff soil and soft soil) and a single PDA on its top, that is, 96 time-history analyses were carried out to assess the effect of SSI and lateral resisting system on the PDAs design. Based on the parametric analyses, the response significantly increases as the soil flexibility increases for both type of lateral wind loads, particularly for flexural-type deformations. The results show a great effectiveness of PDAs in controlling across-wind peak displacements and both along-wind and across-wind RMS accelerations, on the contrary, PDAs were ineffective in controlling along-wind peak displacements on all soil types and different kind of lateral deformation. Generally speaking, the maximum possible value of the PDA mass efficiency index increases as the soil flexibility increases, on the contrary, it decreases as the non-dimensional lateral stiffness ratio of the building increases; therefore, there is a significant increase of the vibration control effectiveness of PDAs for lateral flexural-type deformations on soft soils.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

Effects of 'Methylen Urea' Slow Released Fertilizer and 'T-Vigor' Microbial Fertilizer as Environmental Fertilizer on Growth of Creeping Bentgrass in Golf Course (친환경적 비료인 완효성 비료 'Methylen Urea' 및 미생물 비료 'T-Vigor' 처리가 골프장 그린의 크리핑 벤트크래스 생육에 미치는 영향)

  • Lee Kyeung-Ju;Lee Jae-Pil;Kim Doo-Hwan
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.2
    • /
    • pp.63-70
    • /
    • 2004
  • This study was conducted to figure out the effect of 'Methlyen Urea(MU)', slow released fertilizer and 'T-Vigor', microbial fertilizer as environment fertilizer on growth of 'Crenshaw' creeping bentgrass for environmental management in golf course. This study was conducted at No. 3, 4, 5 Valley Courses of Rexfield Country Club from April to July in 2004. MU, T-Vigor, sterilized T-Vigor were applied five times with 5g and 7.5ml per square meter, respectively. Polt size was 1 square meter and there were three replications with Completely Randomize Design. Collecting data were turf density$(No.\;of\;shoot\;/cm^2)$, chlorophyll $amount(\%)$, root length(cm), dry weight of clipping(g), and dry weight of root(g). The results are as follows; All of turf density, chlorophyll amount and dry weight(g) of MU and T-Vigor were better than control and sterilized T-Vigor. Especially root length of MU and T-Vigor was superior to control and sterilized T-Vigor, even if temperature and humidity was high. In conclusion, MU and T-Vigor might be used as slow release fertilizer for environmental green management in golf course.

A Study on measurement of scattery ray of Computed Tomography (전산화 단층촬영실의 산란선 측정에 대한 연구)

  • Cho, Pyong-Kon;Lee, Joon-Hyup;Kim, Yoon-Sik;Lee, Chang-Yeop
    • Journal of radiological science and technology
    • /
    • v.26 no.2
    • /
    • pp.37-42
    • /
    • 2003
  • Purpose : Computed tomographic equipment is essential for diagnosis by means of radiation. With passage of time and development of science computed tomographic was developed time and again and in future examination by means of this equipment is expected to increase. In this connection these authors measured rate of scatter ray generation at front of lead glass for patients within control room of computed tomographic equipment room and outside of entrance door for exit and entrance of patients and attempted to ind out method for minimizing exposure to scatter ray. Material and Method : From November 2001 twenty five units of computed tomographic equipments which were already installed and operation by 13 general hospitals and university hospitals in Seoul were subjected to this study. As condition of photographing those recommended by manufacturer for measuring exposure to sauter ray was use. At the time objects used DALI CT Radiation Dose Test Phantom fot Head (${\oint}16\;cm$ Plexglas) and Phantom for Stomache(${\oint}32\;cm$ Plexglas) were used. For measurement of scatter ray Reader (Radiation Monitor Controller Model 2026) and G-M Survey were used to Survey Meter of Radical Corporation, model $20{\times}5-1800$, Electrometer/Ion Chamber, S/N 21740. Spots for measurement of scatter ray included front of lead glass for patients within control room of computed tomographic equipment room which is place where most of work by gradiographic personnel are carried out and is outside of entrance door for exit and entrance of patients and their guardians and at spot 100 cm off from isocenter at the time of scanning the object. The results : Work environment within computed tomography room which was installed and under operation by each hospital showed considerable difference depending on circumstances of pertinent hospitals and status of scatter ray was as follows. 1) From isocenter of computed tomographic equipment to lead glass for patients within control room average distance was 377 cm. At that time scatter ray showed diverse distribution from spot where no presence was detected to spot where about 100 mR/week was detected. But it met requirement of weekly tolerance $2.58{\times}10^{-5}\;C/kg$(100 mR/week). 2) From isocenter of computed tomographic equipment to outside of entrance door where patients and their guardians exit and enter was 439 cm in average, At that time scatter ray showed diverse distribution from spot where almost no presence was detected to spot with different level but in most of cases it satisfied requirement of weekly tolerance of $2.58{\times}10^{-6}\;C/kg$(100 mR/week). 3) At the time of scanning object amount of scatter ray at spot with 100 cm distance from isocenter showed considerable difference depending on equipments. Conclusion : Use of computed tomographic equipment as one for generation of radiation for diagnosis is increasing daily. Compared to other general X-ray photographing field of diagnosis is very high but there is a high possibility of exposure to radiation and scatter ray. To be free from scatter ray at computed tomographic equipment room even by slight degree it is essential to secure sufficient space and more effort should be exerted for development of variety of skills to enable maximum photographic image at minimum cost.

  • PDF