• Title/Summary/Keyword: Meteorological observation environment

Search Result 200, Processing Time 0.025 seconds

Vertical Measurement and Analysis of Meteorological Factors Over Boseong Region Using Meteorological Drones (기상드론을 이용한 보성 지역 기상 인자의 연직 측정 및 분석)

  • Chong, Jihyo;Shin, Seungsook;Hwang, Sung Eun;Lee, Seungho;Lee, Seung-Hyeop;Kim, Baek-Jo;Kim, Seungbum
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.575-587
    • /
    • 2020
  • Meteorological phenomena are observed by the Korea Meteorological Administration in a variety of ways (e.g., surface, upper-air, marine, ocean, and aviation). However, there are limits to the meteorological observation of the planetary boundary layer (PBL) that greatly affects human life. In particular, observations using a sonde or aircraft require significant observational costs in economic terms. Therefore, the goal of this study was to measure and analyze the meteorological factors of the vertical distribution of the see-land breeze among local meteorological phenomena using meteorological drones. To investigate the spatial distribution of the see-land breeze, a same integrated meteorological sensor was mounted on each drone at three different points (seaside, bottom of mountain, and mountainside), including the Boseong tall tower (BTT) at the Boseong Standard Weather Observatory (BSWO) in the Boseong region. Vertical profile observations for air temperature, relative humidity, wind direction, wind speed, and air pressure were conducted up to 400 m every 30 minutes from 1100 LST to 1800 LST on August 4, 2018. The spatial characteristics of meteorological phenomena for temperature, relative humidity, and atmospheric pressure were not shown at the four points. Strong winds (~8 m s-1) were observed from the midpoint (~100 m) at strong solar radiation hour, and in the afternoon the wind direction changed from the upper layer at the inland area to the west wind. It is expected that the analysis results of the lower atmospheric layer observed using the meteorological drone may help to improve the weather forecast more accurately.

The Design of Meteorological Information Gathering System Using Public Traffic System (대중교통 체계를 이용한 기상정보 수집 시스템의 설계)

  • Pan, Ye;Kim, Soo-Hwan;Lee, In-Taek;Choi, Jin-Ho;Choi, Jin-Oh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.110-112
    • /
    • 2010
  • Because the building of new meteorological observation towers requires high cost, a collection of precise meteorological data over city area is not easy. To collect atmosphere environment data or meteorological data precisely, a new approach is required. This paper introduces a new meteorological data collecting system using the public traffic systems such as regular route bus. On real time, the regular route bus can provide a meteorological data in periodic time interval and provide them on static route. Without constructing new facilities, only simple sensing and transmission equipments to attach on the bus are needed.

  • PDF

Analysis of Numerical Meteorological Fields due to the Detailed Surface Data in Complex Coastal Area (복잡 연안지역의 지표면 자료 상세화에 따른 수치 기상장 분석)

  • Lee, Hwa-Woon;Jeon, Won-Bae;Lee, Soon-Hwan;Choi, Hyun-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.6
    • /
    • pp.649-661
    • /
    • 2008
  • The impact of the detailed surface data on regional meteorological fields in complex coastal area is studied using RAMS. Resolutions of topography and land use data are very important to numerical modeling, because high resolution data can reflect correct terrain height and detail characteristics of the surface. Especially, in complex coastal region such as Gwangyang area, southern area in Korean Peninsula, high resolution topography and land use data are indispensable for accurate modeling results. This study investigated the effect of resolutions of terrain data using SRTM with 3 second resolution topography and KLU with 1 second resolution land use data. Case HR was the experiment using high resolution data, whereas Case LR used low resolution data. In Case HR, computed surface temperature was higher than Case LR along the coastline and wind speed was $1{\sim}2m/s$ weaker than Case LR. Time series of temperature and wind speed indicated great agreement with the observation data. Moreover, Case HR indicated outstanding results on statistical analysis such as regression, root mean square error, index of agreement.

Evaluation of Mitigation Effect of Upo-Swamp on the Air temperature Variation with Nighttime Cooling Rate (야간 냉각율을 이용한 우포늪의 기온변화 완화효과 평가)

  • Park, Myung-Hee;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.20 no.3
    • /
    • pp.309-319
    • /
    • 2011
  • In this study, we investigated the effects of Upo-swamp upon local thermal environment with nighttime cooling rate. To do this, we set up the AWS(Automatic Weather observation System) over the central part of Upo-swamp on the early October 2007. We conducted the study by comparing the AWS data with another weather data observed by several meteorological observations of the Korea Meteorological Administration located at the vicinity of Upo-swamp for one year. The air temperature of Upo-swamp was higher than that of the surrounding in cold-climate season. But it was opposite in warm-climate season. We confirmed that Upo-swamp roles to mitigate the daily and annual air temperature ranges. And the daily air temperature variation of Upo-swamp lagged behind the land one. This phenomenon represent that the heat reservoir capacity of Upo-swamp is much larger than that of the ground.

A Review of the Observation-based Framework for the Study of Aerosol-Cloud-Precipitation Interactions (CAPI) (에어로솔-구름-강수 상호작용 (CAPI) 연구를 위한 관측 방법론 고찰)

  • Kim, Byung-Gon
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.437-447
    • /
    • 2012
  • There is still large uncertainty in estimating aerosol indirect effect despite ever-escalating efforts and virtually exponential increase in published studies concerning aerosol-cloud-precipitation interactions (CAPI). Probably most uncertainty comes from a wide range of observational scales and different platforms inappropriately used, and inherent complex chains of CAPI. Therefore, well-designed field campaigns and data analysis are required to address how to attribute aerosol signals along with clouds and precipitation to the microphysical effects of aerosols. Basically, aerosol influences cloud properties at the microphysical scales, "process scale", but observations are generally made of bulk properties over a various range of temporal and spatial resolutions, "analysis scale" (McComiskey & Feingold, 2012). In the most studies, measures made within the wide range of scales are erroneously treated as equivalent, probably resulting in a large uncertainty in associated with CAPI. Therefore, issues associated with the disparities of the observational resolution particular to CAPI are briefly discussed. In addition, the dependence of CAPI on the cloud environment such as stability and adiabaticity, and observation characteristics with varying situations of CAPI are also addressed together with observation framework optimally designed for the Korean situation. Properly designed and observation-based CAPI studies will likely continue to accumulate new evidences of CAPI, to further help understand its fundamental mechanism, and finally to develop improved parameterization for cloud-resolving models and large scale models.

Numerical Simulation of Tracer Distribution during CAPTEX (CAPTEX 자료에 나타난 추적물 농도 분포의 수치 모사)

  • Kim, Seung-Bum;Lee, Tae-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.E
    • /
    • pp.357-370
    • /
    • 1994
  • This paper introduces an Eulerian long- range transport model coupled with a mesoscale atmospheric model. The model has been applied to the simulation of tracer distribution during two cases of Cross Appalachian Tracer Experiment (CAPIEX). Meteorological fields are Predicted by CSU RAMS with four-dimensional assimilation and tracer transport is computed from an Eulerian dispersion model. The atmospheric model with a four-dimensional assimilation has produced meteorological fields that agree well with observation and has proved its high potential as a generator of meteorological data for a long-range transport model. The Present transport model Produces reasonable simulations of observed tracer transport although it was partially successful in the case with complicated structure in observed concentration. Model with Bott's 2nd-order scheme performs as well as that with Bott's 4th-order scheme and increased explicit horizontal diffusivity. Diagnosis of the model results indicates that the Present long-range transport model has a good potential as a framework for the acid deposition model with detailed cloud and chemical processes.

  • PDF

Classification of Atmospheric Vertical Environment Associated with Heavy Rainfall using Long-Term Radiosonde Observational Data, 1997~2013 (장기간(1997~2013) 라디오존데 관측 자료를 활용한 집중호우 시 연직대기환경 유형 분류)

  • Jung, Sueng-Pil;In, So-Ra;Kim, Hyun-Wook;Sim, JaeKwan;Han, Sang-Ok;Choi, Byoung-Choel
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.611-622
    • /
    • 2015
  • Heavy rainfall ($>30mm\;hr^{-1}$) over the Korean Peninsula is examined in order to understand thermo-dynamic characteristics of the atmosphere, using radiosonde observational data from seven upper-air observation stations during the last 17 years (1997~2013). A total of 82 heavy rainfall cases during the summer season (June-August) were selected for this study. The average values of thermo-dynamic indices of heavy rainfall events are Total Precipitable Water (TPW) = 60 mm, Convective Available Potential Energy (CAPE) = $850J\;kg^{-1}$, Convective Inhibition (CIN) = $15J\;kg^{-1}$, Storm Relative Helicity (SRH) = $160m^2s^{-2}$, and 0~3 km bulk wind shear = $5s^{-1}$. About 34% of the cases were associated with a Changma front; this pattern is more significant than other synoptic pressure patterns such as troughs (22%), migratory cyclones (15%), edges of high-pressure (12%), typhoons (11%), and low-pressure originating from Changma fronts (6%). The spatial distribution of thermo-dynamic conditions (CAPE and SRH) is similar to the range of thunderstorms over the United States, but extreme conditions (supercell thunderstorms and tornadoes) did not appear in the Korean Peninsula. Synoptic conditions, vertical buoyancy (CAPE, CIN), and wind parameters (SRH, shear) are shown to discriminate among the environments of the three types. The first type occurred with high CAPE and low wind shear by the edge of the high pressure pattern, but Second type is related to Changma front and typhoon, exhibiting low CAPE and high wind shear. The last type exhibited characteristics intermediate between the first and second types, such as moderate CAPE and wind shear near the migratory cyclone and trough.

Estimation of Rice Yield by Province in South Korea based on Meteorological Variables (기상자료를 이용한 남한지역 도별 쌀 생산량 추정)

  • Hur, Jina;Shim, Kyo-Moon;Kim, Yongseok;Kang, Kee-Kyung
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.599-605
    • /
    • 2019
  • Rice yield (kg 10a-1) in South Korea was estimated by meteorological variables that are influential factors in crop growth. This study investigated the possibility of anticipating the rice yield variability using a simple but an efficient statistical method, a multiple linear regression analysis, on the basis of the annual variation of meteorological variables. Due to heterogeneous environmental conditions by region, the yearly rice yield was assessed and validated for each province in South Korea. The monthly mean meteorological data for the period 1986-2018 (33 years) from 61 weather stations provided by Korean Meteorological Administration was used as the independent variable in the regression analysis. An 11-fold (leave-three-out) cross-validation was performed to check the accuracy of this method estimating rice yield at each province. This result demonstrated that temporal variation of rice yield by province in South Korea can be properly estimated using such concise procedure in terms of correlation coefficient (0.7, not significant). Furthermore, the estimated rice yield well captured spatial features of observation with mean bias of 0.7 kg 10a-1 (0.15%). This method may offer useful information on rice yield by province in advance as long as accurate agro-meteorological forecasts are timely obtained from climate models.

Analysis of Radiation Energy Budget Using WISE Observation Data on the Seoul Metropolitan Area (WISE 관측자료를 이용한 수도권지역의 복사에너지수지 분석)

  • Jee, Joon-Bum;Lee, Hankyung;Min, Jae-Sik;Chae, Jung-Hoon;Kim, Sangil
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.103-114
    • /
    • 2017
  • Radiation energy budget was analyzed using observation data from the Weather Information Service Engine (WISE) energy flux tower on the Seoul metropolitan area. Among observation data from the 13 energy flux towers, we used meteorological variables, radiation data (upward and downward short wave, upward and downward long wave, net short wave, net long wave and net radiation), albedo and emissivity for 15 months from July 2016 to September 2017. Although Gajwa (205) and Ttuksumm (216) sites located in urban, the albedo was relatively high due to the surround environment by glass wall buildings and the Han river around the sites. And Bucheon (209) site located in the suburb represented generally low emissivity. As a result, the albedo decreased and the emissivity increased in the city center. In the Seoul metropolitan area, the net radiation energy is $73.9W/m^2$ that the radiation budget of the surface is absorbed into the atmosphere. According to WISE observation data, it can be seen that observation at each sites are influenced by the surrounding environment.