Browse > Article
http://dx.doi.org/10.14191/Atmos.2012.22.4.437

A Review of the Observation-based Framework for the Study of Aerosol-Cloud-Precipitation Interactions (CAPI)  

Kim, Byung-Gon (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University)
Publication Information
Atmosphere / v.22, no.4, 2012 , pp. 437-447 More about this Journal
Abstract
There is still large uncertainty in estimating aerosol indirect effect despite ever-escalating efforts and virtually exponential increase in published studies concerning aerosol-cloud-precipitation interactions (CAPI). Probably most uncertainty comes from a wide range of observational scales and different platforms inappropriately used, and inherent complex chains of CAPI. Therefore, well-designed field campaigns and data analysis are required to address how to attribute aerosol signals along with clouds and precipitation to the microphysical effects of aerosols. Basically, aerosol influences cloud properties at the microphysical scales, "process scale", but observations are generally made of bulk properties over a various range of temporal and spatial resolutions, "analysis scale" (McComiskey & Feingold, 2012). In the most studies, measures made within the wide range of scales are erroneously treated as equivalent, probably resulting in a large uncertainty in associated with CAPI. Therefore, issues associated with the disparities of the observational resolution particular to CAPI are briefly discussed. In addition, the dependence of CAPI on the cloud environment such as stability and adiabaticity, and observation characteristics with varying situations of CAPI are also addressed together with observation framework optimally designed for the Korean situation. Properly designed and observation-based CAPI studies will likely continue to accumulate new evidences of CAPI, to further help understand its fundamental mechanism, and finally to develop improved parameterization for cloud-resolving models and large scale models.
Keywords
Aerosol; cloud; precipitation; interactions; observation; scale;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 김병곤, 권태영, 2006: 지상원격탐사를 이용한 에어러솔 간접효과 연구. 한국대기환경학회지, 22(2), 235-247.
2 김유준, 이진화, 김병곤, 2011: 한반도 주변에서 MODIS와 NCEP/NCAR 재분석 자료를 이용한 에어로졸과 구름의 연관성 분석. 한국대기환경학회지, 27(2), 152-167.
3 은승희, 채상희, 김병곤, 장기호, 2011: 한반도 중부지역에서 약한 강수에 미치는 도시화 효과. 대기지, 21(3), 229-241.
4 Ackerman, T. P. and G. M. Stokes, 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56, 38-44.
5 Albrecht, B. A., 1989: Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science, 245, 1227-1230.   DOI   ScienceOn
6 Alpert, P., N. Halfon, and Z. Levin, 2008: Does Air Pollution Really Suppress Precipitation in Israel?, J. Appl. Meteor. Climatol., 47(4), 933-943.   DOI   ScienceOn
7 Alpert, P., N. Halfon, and Z. Levin, 2008: Does Air Pollution Really Suppress Precipitation in Israel?, J. Appl. Meteor. Climatol., 47(4), 933-943.   DOI   ScienceOn
8 Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silvas-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 1337-1342.   DOI   ScienceOn
9 Ayers, G. P., 2005: Air pollution and climate change: has air pollution suppressed rainfall over Australia?. Clean Air & Environ. Quality, 39(2), 51-57.
10 Ballasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502-505.   DOI   ScienceOn
11 Coakley, J. A., and Coauthors, 2000: The appearance and disappearance of ship tracks on large spatial scales. J. Atmos. Sci., 57, 2765-2778.   DOI   ScienceOn
12 Feingold, G., W. L. Eberhard, D. E. Veron, and M. Previdi, 2003: First measurements of the Twomey aerosol indirect effect using ground-based remote sensors. Geophys. Res. Lett., 30(6), 1287, doi:10.1029/2002GL016633.   DOI
13 Feingold, G., R. Furrer, P. Pilewskie, L. Remer, Q. Min, and H. Jonsson, 2006: Aerosol indirect effect studies at Southern Great Plains during the May 2003 Intensive Operations Period. J. Geophys. Res., 111, D05S14, doi:10.1029/2004JD005648.   DOI
14 Feingold, G., 2012: Old and New Paradigms for Aerosol-Cloud-Precipitation studies. ASR 2012 annual meeting.
15 Ferek, R. J. and Coauthors, 2000: Drizzle suppression in ship tracks. J. Atmos. Sci., 57, 2707-2728, doi:10.1175/1520-0469(2000).   DOI   ScienceOn
16 Kaufman, Y. J. and I. Koren, 2006: Smoke and Pollution Aerosol Effect on Cloud Cover. Science, 313, 655-658, DOI: 10.1126/science.1126232.   DOI
17 Kim, B.-G., S. E. Schwartz, M. A. Miller, and Q. Min, 2003: Effective radius of cloud droplets by ground-based remote sensing: Relationship to aerosol. J. Geophys. Res., 108(D23), 4740, doi:10.1029/2003JD003721   DOI
18 Kim, B.-G., M. A. Miller, S. E. Schwartz, Y. Liu, and Q. Min, 2008: The role of adiabaticity in the aerosol first indirect effect. J. Geophys. Res., 113, D05210, doi:10.1029/2007JD008961.   DOI
19 Kim, Y. J, B.-G. Kim, M. Miller, Q. Min, and C.-K. Song, 2012: Enhanced Aerosol-Cloud Relationships in More Stable and Adiabatic Clouds. Asia-Pacific J. Atmos. Sci., 48(3), 283-293.   DOI   ScienceOn
20 Kim, B.-G., M. H. Choi, and C. H. Ho, 2009: Weekly periodicities of meteorological variables and their possible association with aerosols in Korea. Atmos. Environ., 43(38), 6058-6065.   DOI   ScienceOn
21 Koren, I., Y. J. Kaufman, L. A. Remer, and J. V. Martins, 2004: Measurements of the effect of smoke aerosol on inhibition of cloud formation. Science, 303, 1342-1345.   DOI
22 Lau, K., M. Kim, and K. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26, 855-864.   DOI   ScienceOn
23 Li, Z., F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, 2011: Long-term impacts of aerosols on the vertical developments of clouds and precipitation. Nat. Geosci., doi:10.1038/NGEO1313.
24 Lin, J. C., T. Matsui, R. A. Pielke Sr., and C. Kummerow, 2006: Effects of biomass burning-derived aerosols on precipitation and clouds in the Amazon Basin: Asatellite-based empirical study J. Geophys. Res. 111, D19204, doi:10.1029/2005JD006884.   DOI
25 Lu, C., Y. Liu, and S. Niu, 2011: Examination of turbulent entrainmentmixing mechanisms using a combined approach. J. Geophys. Res., 116, D20207, doi:10.1029/2011JD015944.   DOI
26 Lu, C., S. S. Yum, S. Niu, and S. Endo, 2012: A new approach for estimating entrainment rate in cumulus clouds. Geophys. Res. Lett., 39, L04802, doi:10.1029/2011GL050546.
27 McComiskey, A., G. Feingold, A. S. Frisch, D. D. Turner, M. A. Miller, J. C. Chiu, Q. Min, and J. A. Ogren, 2009: An assessment of aerosol-cloud interactions in marine stratus clouds based on surface remote sensing. J. Geophys. Res., 114, D09203, doi:10.1029/2008JD011006.   DOI
28 McComiskey, A., and G. Feingold, 2012: The scale problem in quantifying aerosol indirect effects. Atmos. Chem. Phys., 12, doi:10.5194/acp-12-1031-2012.
29 Robinson, W. S., 1950: Ecological Correlations and the Behavior of Individuals. American Sociological Review, 15, 351-357.   DOI   ScienceOn
30 Niu, F. and Z. Li, 2011: Cloud invigoration and suppression by aerosols over the tropical region based on satellite observations. Atmos. Chem. Phys. Discuss., 11, 5003-5017, doi:10.5194/acpd-11-5003-2011.   DOI
31 Rosenfeld D., and I. M. Lensky, 1998: Satellite based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 2457-2476   DOI   ScienceOn
32 Rosenfeld D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett. , 26(20), 3105-3108, doi:10.1029/1999GL006066.   DOI
33 Rosenfeld D., 2000: Suppression of Rain and Snow by Urban and Industrial Air Pollution. Science, 287(5459), 1793-1796.   DOI   ScienceOn
34 Rosenfeld D., and W. L. Woodley, 2000: Deep Convective Clouds with Sustained Supercooled Liquid Water Down to-37.5 degrees C. Nature, 405, 440-442.   DOI
35 Rosenfeld D., Y. Rudich, and R. Lahav, 2001: Desert dust suppressing precipitation: a possible desertification feedback loop. Proc. Nati. Acad. Sci., 98, 5975-5980.   DOI   ScienceOn
36 Rosenfeld D., U. Lohmann, G. B. Raga, C. D. O'Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or Drought: How Do Aerosols Affect Precipitation?. Science, 321, 1309-1313.   DOI   ScienceOn
37 Sekiguchi, M., T. Nakajima, K. Suzuki, K. Kawamoto, A. Higurashi, D. Rosenfeld, I. Sano, and S. Mukai, 2003: A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters. J. Geophys. Res., 108(D22), 4699, doi:10.1029/2002JD003359.   DOI
38 Shinozuka, Y. and J. Redemann, 2011: Horizontal variability of aerosol optical depth observed during the ARCTAS airborne experiment. Atmos. Chem. Phys., 11, 8489-8495, doi:10.5194/acp-11-8489-2011.   DOI
39 Shao, H. and G. Liu, 2006: Influence of mixing on evaluation of the aerosol first indirect effect. Geophys. Res. Lett., 33, L14809, doi:10.1029/2006GL026021.   DOI
40 Stevens, B. and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607-613, doi:10.1038/nature08281.   DOI   ScienceOn
41 Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, doi:10.1029/2011RG000369.   DOI
42 Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 1251-1256.   DOI   ScienceOn
43 Quaas, J., O. Boucher, N. Bellouin, and S. Kinne, 2008: Satellite-based estimate of the direct and indirect aerosol climate forcing. J. Geophys. Res., 113, D05204, doi:10.1029/2007JD008962.   DOI
44 Quaas, J., and Coauthors, 2009: Aerosol indirect effects-General circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys., 9, 8697-8717, doi:10.5194/acp-9-8697-2009.   DOI