• Title/Summary/Keyword: Meteorological condition

Search Result 487, Processing Time 0.027 seconds

Ozone Pollution Patterns and the Relation to Meteorological Conditions in the Greater Seoul Area (수도권지역 오존오염 패턴과 기상학적 특성)

  • Oh In-Bo;Kim Yoo-Keun;Hwang Mi-Kyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.357-365
    • /
    • 2005
  • The typical patterns of surface $O_3$ pollution and their dependence on meteorology were studied in the Greater Seoul Area (GSA) during warm season (April-September) from 1998 to 2002. In order to classify the $O_3$ pollution patterns, two-stage (average linkage then k-means) clustering technique was employed based on daily maximum $O_3$ concentrations obtained from 53 monitoring sites during high $O_3$ events (118 days). The clustering technique identified four statistically distinct $O_3$ pollution patterns representing the different horizontal distributions and levels of $O_3$ in GSA. The prevailed pattern (93 days, $49.5\%$) distinctly showed the gradient of $49.5\%$ concentrations going from west to east in GSA. Very high $49.5\%$ concentrations throughout GSA (24 days, $12.8\%$) were also found as a significant pattern of severe $O_3$ pollution. In order to understand the characteristics of $O_3$ pollution patterns, the relationship between $O_3$ pollution patterns and meteorological conditions were analyzed using both synoptic charts and surface/upper air data. Each pattern was closely associated with surface wind interacted with synoptic background flow allowing to transport and accumulate $O_3$ and its precursor. In particular, the timing and inland penetration of sea-breeze were apparently found to play very important role in determining $O_3$ distributions.

Analysis of Meteorological Features and Prediction Probability Associated with the Fog Occurrence at Chuncheon (춘천의 안개발생과 관련된 기상특성분석 및 수치모의)

  • Lee Hwa Woon;Lee Kwi Ok;Baek Seung-Joo;Kim Dong Hyeok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.303-313
    • /
    • 2005
  • In this study, meteorological characteristics concerning the occurrence of fog are analyzed using 4-years $(2000\~2003)$ data at Chuncheon and the probability of prediction is investigated. From the analysis of meteorological characteristics, the fog at Chuncheon occurred before sunrise time and disappeared after that time and lasted for $2\~4$ hours. When fog occurred, on the whole, wind direction was blew the northerly and wind speed was below 2.1m/s. Especially, about $42\%$ of foggy day fell on the calm $(0\~0.2\;ms^{-1})$ conditions. The difference between air temperature and dew point temperature near the surface were mainly less than $2^{\circ}C$. For the lack of water surface temperature, the water surface temperature was calculated by using Water Quality River Reservoir System (WQRRS) and then it was used as the surface boundary condition of MM5. The numerical experiment was carried out for 2 days from 1300 LST on 14 October 2003 to 1300 LST on 16 October 2003 and fog was simulated at dawn on 15 and 16 October 2003. Simulated air temperature and dew point temperature indicate the similar tendency to observation and the simulated difference between air temperature and dew point temperature has also the similar tendency within $2^{\circ}C$. Thus, the occurrence of fog is well simulated in the terms of the difference between air temperature and dew point temperature. Horizontal distribution of the difference between air temperature and dew point temperature from the numerical experiment indicates occurrence, dissipation and lasting time of fog at Chuncheon. In Chuncheon, there is close correlation between the frequency of fog day and outflow from Soyang reservoir and high frequency of occurrence due to the difference between air and cold outlet water temperature.

Application case of odor management applied direct olfactory method in Iksan (익산지역에서 직접관능법에 의한 악취관리 사례 연구)

  • Kim, Hwa-Ok;Park, Hui-Geun;Shin, Dae-Yewn;Kang, Gong-Unn
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.2
    • /
    • pp.17-30
    • /
    • 2009
  • In Iksan city, there have been a lot of complaints caused by offensive odor from residents living near the public environmental infrastructures and the Iksan industrial complex. To solve these problems, it is important to know the present condition of odor pollution level in these areas, the emission characteristics of malodorous gases in temporal and spatial variations in addition to meteorological components, and the facilities of major sources emitting malodorous compounds. The objectives of this study is to make the odor monitoring network for 20 people who lived and worked in areas where the environmental infrastructures and the Iksan industrial complex are located and their neighboring areas for six months from June 1st to October 31st in 2008 in Iksan and to monitor the temporal and regional frequency and characteristics of odor intensity using direct olfactory methods. As a result of odor monitoring, the highest frequency of sensed odor per month and 20 people for six months was found to be 107 in July, followed by 84 in September, 80 in August, 54 in June, 38 in October, respectively. Odor intensity trend showed a regional trend in the decreasing order of Dongsan-dong, Busong-dong, and Palbong-dong. Odor was widely perceived from night through next morning and considered as the sense of excreta, chemicals, sewage, compost, waste, etc. When high odor intensity was sensed, there were constant meteorological characteristics: relative humidity was 80~90%, wind speed was less than 0.5~1 m/sec, and main wind directions were from the east, the southeast, and the south.

Design of RBFNN-Based Pattern Classifier for the Classification of Precipitation/Non-Precipitation Cases (강수/비강수 사례 분류를 위한 RBFNN 기반 패턴분류기 설계)

  • Choi, Woo-Yong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.586-591
    • /
    • 2014
  • In this study, we introduce Radial Basis Function Neural Networks(RBFNNs) classifier using Artificial Bee Colony(ABC) algorithm in order to classify between precipitation event and non-precipitation event from given radar data. Input information data is rebuilt up through feature analysis of meteorological radar data used in Korea Meteorological Administration. In the condition phase of the proposed classifier, the values of fitness are obtained by using Fuzzy C-Mean clustering method, and the coefficients of polynomial function used in the conclusion phase are estimated by least square method. In the aggregation phase, the final output is obtained by using fuzzy inference method. The performance results of the proposed classifier are compared and analyzed by considering both QC(Quality control) data and CZ(corrected reflectivity) data being used in Korea Meteorological Administration.

Development of Method to Predict Source Region of Swell-Like High Waves in the East Sea (동해안 너울성 고파의 발생역 추정법 개발)

  • Ahn, Suk Jin;Lee, Changhoon;Kim, Shin Woong;Jeong, Weon-Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.212-221
    • /
    • 2016
  • In this study, characteristics of swell-like high waves in the East Sea were analyzed using observed wave data and predicted meteorological data from the National Oceanic and Atmospheric Administration (NOAA). And, the wave prediction system using the data from the NOAA has been established. Furthermore, the applicability of the system has been verified by comparing the predicted results with the corresponding observed data. For some case, there were two times of wave height increase and the second increase occurred in a calm weather condition on the coast which might cause casualties. The direction of wave energy propagation was estimated from observed wave data in February, 2008. Through comparison between the direction of wave energy propagation and the meteorological data, it turns out that the second increase of waves is originated from the seas between Russia and Japan which is far from the East Sea.

Weather Characteristics of Oenarodo Space Center (외나로도 우주센터의 기상특성)

  • Kim, Jhoon;Kook, B.J.;Moon, K.J.;Lee, J.H.;Koo, J.H.;Park, S.S.;Lee, H.K.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.314-327
    • /
    • 2009
  • Weather launch criteria of launch at Oenarodo Space Center is important for the successful launch operation. In particular, most of the launch failure occurs during the period of separation from the launch pad, thus meteorological condition is critical at this phase. In earlier days, the weather launch criteria adopted wind and forecast data for the launch operation. Nevertheless, the control of position and stability require other meteorological components such as vertical wind shear, lightning, temperature and visibility, because the launch vehicle is moving mostly vertically. We analyze these meteorological components by using the observed data at KMA at neighboring Oenarodo to determine the weather launch criteria. These criteria need further refinements through long-term observation.

A Remote Sensed Data Combined Method for Sea Fog Detection

  • Heo, Ki-Young;Kim, Jae-Hwan;Shim, Jae-Seol;Ha, Kyung-Ja;Suh, Ae-Sook;Oh, Hyun-Mi;Min, Se-Yun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Steam and advection fogs are frequently observed in the Yellow Sea from March to July except for May. This study uses remote sensing (RS) data for the monitoring of sea fog. Meteorological data obtained from the Ieodo Ocean Research Station provided a valuable information for the occurrence of steam and advection fogs as a ground truth. The RS data used in this study were GOES-9, MTSAT-1R images and QuikSCAT wind data. A dual channel difference (DCD) approach using IR and shortwave IR channel of GOES-9 and MTSAT-1R satellites was applied to detect sea fog. The results showed that DCD, texture-related measurement and the weak wind condition are required to separate the sea fog from the low cloud. The QuikSCAT wind data was used to provide the wind speed criteria for a fog event. The laplacian computation was designed for a measurement of the homogeneity. A new combined method, which includes DCD, QuikSCAT wind speed and laplacian computation, was applied to the twelve cases with GOES-9 and MTSAT-1R. The threshold values for DCD, QuikSCAT wind speed and laplacian are -2.0 K, $8m\;s^{-1}$ and 0.1, respectively. The validation results showed that the new combined method slightly improves the detection of sea fog compared to DCD method: improvements of the new combined method are $5{\sim}6%$ increases in the Heidke skill score, 10% decreases in the probability of false detection, and $30{\sim}40%$ increases in the odd ratio.

A Study on Upper Ocean Response to Typhoon Ewiniar (0603) and Its Impact (태풍 에위니아 (0603) 통과 후 상층해양 변동 특성과 영향)

  • Jeong, Yeong Yun;Moon, Il-Ju;Kim, Sung-Hun
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.205-220
    • /
    • 2013
  • Upper ocean response to typhoon Ewiniar (0603) and its impact on the following typhoon Bilis (0604) are investigated using observational data and numerical experiments. Data used in this study are obtained from the Ieodo Ocean Research Station (IORS), ARGO, and satellite. Numerical simulations are conducted using 3-dimensional Princeton Ocean Model. Results show that when Ewiniar passes over the western North Pacific, unique oceanic responses are found at two places, One is in East China Sea near Taiwan and another is in the vicinity of IORS. The latter are characterized by a strong sea surface cooling (SSC), $6^{\circ}C$ and $11^{\circ}C$ in simulation and observation, under the condition of typhoon with a fast translation speed (8m $s^{-1}$) and lowering intensity (970 hPa). The record-breaking strong SSC is caused by the Yellow Sea Bottom Cold Water, which produces a strong vertical temperature gradient within a shallow depth of Yellow Sea. The former are also characterized by a strong SSC, $7.5^{\circ}C$ in simulation, with a additional cooling of $4.5^{\circ}C$ after a storm's passage mainly due to enhanced and maintained upwelling process by the resonance coupling of storm translation speed and the gravest mode internal wave phase speed. The numerical simulation reveals that the Ewiniar produced a unfavorable upper-ocean thermal condition, which eventually inhibited the intensification of the following typhoon Bilis. Statistics show that 9% of the typhoons in western North Pacific are influenced by cold wakes produced by a proceeding typhoon. These overall results demonstrate that upper ocean response to a typhoon even after the passage is also important factor to be considered for an accurate intensity prediction of a following typhoon with similar track.

Design of Very Short-term Precipitation Forecasting Classifier Based on Polynomial Radial Basis Function Neural Networks for the Effective Extraction of Predictive Factors (예보인자의 효과적 추출을 위한 다항식 방사형 기저 함수 신경회로망 기반 초단기 강수예측 분류기의 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.128-135
    • /
    • 2015
  • In this study, we develop the very short-term precipitation forecasting model as well as classifier based on polynomial radial basis function neural networks by using AWS(Automatic Weather Station) and KLAPS(Korea Local Analysis and Prediction System) meteorological data. The polynomial-based radial basis function neural networks is designed to realize precipitation forecasting model as well as classifier. The structure of the proposed RBFNNs consists of three modules such as condition, conclusion, and inference phase. The input space of the condition phase is divided by using Fuzzy C-means(FCM) and the local area of the conclusion phase is represented as four types of polynomial functions. The coefficients of connection weights are estimated by weighted least square estimation(WLSE) for modeling as well as least square estimation(LSE) method for classifier. The final output of the inference phase is obtained through fuzzy inference method. The essential parameters of the proposed model and classifier such ad input variable, polynomial order type, the number of rules, and fuzzification coefficient are optimized by means of Particle Swarm Optimization(PSO) and Differential Evolution(DE). The performance of the proposed precipitation forecasting system is evaluated by using KLAPS meteorological data.

A Study on the Method for Estimating Evapotranspiration from Paddy Fields (수도의 증발산량 추정방법에 관한 연구)

  • 허재석;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.25 no.2
    • /
    • pp.86-95
    • /
    • 1983
  • Evapotranspiration is a major factor determining the water consumption in the rice fields. Therefore, realistic evapotranspiration estimates are important to the agricultural water resources planning. In Korea, however, the Blaney-Criddle formula, which was developed under the meteorological condition of western arid United States and the upland cultivation, has been widely used to estimate evapotranspiration from paddy fields. Hence, it has considered that the Blaney-Criddle formula would not be the proper method for the Korean paddy condition. The purpose of this study is to select the most appropriate and realistic method for estimating evapotranspiraion from paddy field in Korea and to derive crop coefficients using the chosen method. The results are summerized as follows. 1. Total seasonal-average evapotranspiration by the field observation was 660mm for Tongil and 621. Ornm for the Japonica variety of rice. The amount of evapotranspiration for Tongil variety was 6% larger than that of the Japonica variety. 2. There was no significant differences in the amount of evapotranspiration among early, middle and late mature varieties, that is, early 638mm, middle 627mm and late 630mm for the whole growing season. 3. The rate of peak evapotranspiration appeared at the beginning of August and was in the range of 7.7-8. Omm/day according to the different mature varieties. 4. The correlation between pan evaporation data and the calculated evapotranspiration using related meteorological data from various methods suggested such as Radiation (FAO), Hargreaves, Christiansen, Hargreaves-Christiansen, Jensen-Haise, showed high statistic significance. Therefore, it seemed to use those formulars in estimating evapotranspiration inste4 of using pan evaporation data. 5. It was concluded from the analysis of field data that the evapotranspiration estimate for Blaney-Criddle method might not be appropriate in Korea. On the other hand, Penman equation showed more accurate estimation at the flourishing stage of rice than the pan evaporation method. 6. The crop coefficients for the Penman and pan-evaporation method were obtained by graphical representation.

  • PDF