• Title/Summary/Keyword: Meteorological Technology

Search Result 749, Processing Time 0.031 seconds

Preprocessing of the Direct-broadcast Data from the Atmospheric Infared Sounder (AIRS) Sounding Suite on Aqua Satellite

  • Kim, Seungbum;Park, Hyesook;Kim, Kumlan;Park, Seunghwan;Kim, Moongyu;Lee, Jongju
    • Atmosphere
    • /
    • v.13 no.4
    • /
    • pp.71-79
    • /
    • 2003
  • We present a pre processing system for the Atmospheric Infrared Sounder (AIRS) sounding suite onboard Aqua satellite. With its unprecedented 2378 channels in IR bands, AIRS aims at achieving the sounding accuracy [s1]of a radiosonde (1 K in 1-km layer for temperature and 10% in 2-km layer for humidity). The core of the pre p rocessor is the International MODIS/AIRS Processing Package (IMAPP) that performs the geometric and radiometric correction to compute the Earth's radiance. Then we remove spurious data and retrieve the brightness temperature (Tb). Since we process the direct-broadcast data almost for the first time among the AIRS directbroadcast community, special attention is needed to understand and verify the products. This includes the pixel-to-pixel verification of the direct-broadcast product with reference to the fullorbit product, which shows the difference of less than $10^{-3}$ K in IR Tb.

Study on Weather Modification Hybrid Rocket Experimental Design and Application (기상조절용 하이브리드 로켓의 실험 설계 및 활용연구)

  • Joo Wan Cha;Bu-Yo Kim;Miloslav Belorid;Yonghun Ro;A-Reum Ko;Sun Hee Kim;Dong-Ho Park;Ji Man Park;Hae Jung Koo;Ki-Ho Chang;Hong Hee Lee;Soojong Kim
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.203-216
    • /
    • 2024
  • The National Institute of Meteorological Sciences in Korea has developed the Weather Modification Hybrid Rocket (WMHR), an advanced system that offers enhanced stability and cost-effectiveness over conventional solid-fuel rockets. Designed for precise operation, the WMHR enables accurate control over the ejection altitude of pyrotechnics by modulating the quantity of oxidizer, facilitating specific cloud seeding at various atmospheric layers. Furthermore, the rate of descent for pyrotechnic devices can be adjusted by modifying parachute sizes, allowing for controlled dispersion time and concentration of seeding agents. The rocket's configuration also supports adjustments in the pyrotechnic device's capacity, permitting tailored seeding agent deployment. This innovation reflects significant technical progression and collaborations with local manufacturers, in addition to efforts to secure testing sites and address hybrid rocket production challenges. Notable outcomes of this project include the creation of a national framework for weather modification technology utilizing hybrid rockets, enhanced cloud seeding methods, and the potential for broader meteorological application of hybrid rockets beyond precipitation augmentation. An illustrative case study confirmed the WMHR's operational effectiveness, although the impact on cloud seeding was limited by unfavorable weather conditions. This experience has provided valuable insights and affirmed the system's potential for varied uses, such as weather modification and deploying high-altitude meteorological sensors. Nevertheless, the expansion of civilian weather rocket experiments in Korea faces challenges due to inadequate infrastructure and regulatory limitations, underscoring the urgent need for advancements in these areas.

Spatial Interpolation and Assimilation Methods for Satellite and Ground Meteorological Data in Vietnam

  • Do, Khac Phong;Nguyen, Ba Tung;Nguyen, Xuan Thanh;Bui, Quang Hung;Tran, Nguyen Le;Nguyen, Thi Nhat Thanh;Vuong, Van Quynh;Nguyen, Huy Lai;Le, Thanh Ha
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.556-572
    • /
    • 2015
  • This paper presents the applications of spatial interpolation and assimilation methods for satellite and ground meteorological data, including temperature, relative humidity, and precipitation in regions of Vietnam. In this work, Universal Kriging is used for spatially interpolating ground data and its interpolated results are assimilated with corresponding satellite data to anticipate better gridded data. The input meteorological data was collected from 98 ground weather stations located all over Vietnam; whereas, the satellite data consists of the MODIS Atmospheric Profiles product (MOD07), the ASTER Global Digital Elevation Map (ASTER DEM), and the Tropical Rainfall Measuring Mission (TRMM) in six years. The outputs are gridded fields of temperature, relative humidity, and precipitation. The empirical results were evaluated by using the Root mean square error (RMSE) and the mean percent error (MPE), which illustrate that Universal Kriging interpolation obtains higher accuracy than other forms of Kriging; whereas, the assimilation for precipitation gradually reduces RMSE and significantly MPE. It also reveals that the accuracy of temperature and humidity when employing assimilation that is not significantly improved because of low MODIS retrieval due to cloud contamination.

A Preliminary Performance Analysis of the Meteorological and Ocean Data Communication Subsystem in COMS (통신해양기상위성 기상해양데이터통신계의 예비 성능 해석)

  • Kim, Jung-Pyo;Yang, Gun-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.25-31
    • /
    • 2006
  • The COMS (Communication, Ocean, and Meteorological Satellite) performing meteorological and ocean monitoring and providing communication service with meteorological, ocean and Ka-band payload in the geostationary orbit includes MODCS (Meteorological and Ocean Data Communication Subsystem) which provides transmitting the raw data collected by meteorological payload called MI (Meteorological Imager) and ocean payload named GOCI (Geostationary Ocean Color Imager) to the ground station and relaying the meteorological data processed on the ground to the end-user stations. MODCS comprises of two channels: SD channel which formats the raw data according to CCSDS recommendation, amplifies and transmits its signal to the ground station; MPDR channel which relays to the end-user stations the ground-processed meteorological data in the data format of LRIT/HRIT recommended by CGMS. This paper constructs the architecture of MODCS for transmitting and relating the observed data, and investigates that the key performance parameters have the required margin through the preliminary performance analyses.

  • PDF

THE EFFECT OF SURFACE METEOROLOGICAL MEASUREMENTS ON GPS HEIGHT DETERMINATION

  • Huang, Yu-Wen;Wang, Chuan-Sheng;Liou, Yuei-An;Yeh, Ta-Kang
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.748-751
    • /
    • 2006
  • Positioning accuracy by the Global Positioning System (GPS) is of great concern in a variety of research tasks. It is limited due to error sources such as ionospheric effect, orbital uncertainty, antenna phase center variation, signal multipath, and tropospheric influence. In this study, the tropospheric influence, primarily due to water vapour inhomogeneity, on GPS positioning height is investigated. The data collected by the GPS receivers along with co-located surface meteorological instruments in 2003 are utilized. The GPS receivers are established as continuously operating reference stations by the Ministry of the Interior (MOI), Central Weather Bureau (CWB), and Industrial Technology Research Institute (ITRI) of Taiwan, and International GNSS Service (IGS). The total number of GPS receivers is 21. The surface meteorological measurements include temperature, pressure, and humidity. They are introduced to GPS data processing with 24 troposphere parameters for the station heights, which are compared with those obtained without a priori knowledge of surface meteorological measurements. The results suggest that surface meteorological measurements have an expected impact on the GPS height. The daily correction maximum with the meteorological effect may be as large as 9.3 mm for the cases of concern.

  • PDF

Variability of Ocean Status around Ulleung Basin and Dok-do by using ARGO Data (무인 해양관측기 (ARGO 플로트) 자료를 이용한 울릉분지 및 독도 주변해역 해황 변동성 분석)

  • Youn, Yong-Hoon;Chang, You-Soon;Hyun, Yu-Kyung;Cho, Chang-Woo;Ku, Ja-Ok;Cho, Min-Kwang;Ban, Young-Seok;Park, Seong-Jun;Kim, Su-Jeong
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.379-385
    • /
    • 2006
  • Meteorological Research Institute (METRI) participates the R&E (Research and Education) program of Korea Science and Engineering Foundation,"Variability of ocean status around Ulleung basin and Dok-do by using ARGO data" as a part of "Carricula development for gifted students" program. From this program, we support students to have an opportunity for handling scientific data with advanced technology and inspire their scientific interests. In this article, we introduce the training processes of this program and the results of data analysis by the students themselves.

A Novel Ramp Method Based on Improved Smoothing Algorithm and Second Recognition for Windshear Detection Using LIDAR

  • Li, Meng;Xu, Jiuzhi;Xiong, Xing-long;Ma, Yuzhao;Zhao, Yifei
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.7-14
    • /
    • 2018
  • As a sophisticated detection technology, LIDAR has been widely employed to probe low-altitude windshear. Due to the drawbacks of the traditional ramp algorithm, the alarm accuracy of the LIDAR has not been satisfactory. Aiming at settling this matter, a novel method is proposed on the basis of improved signal smoothing and second windshear detection, which essentially acts as a combination of ramp algorithm and segmentation approach, involving the human factor as well as signal fluctuations. Experiments on the real and artificial signals verify our approach.

Vertical Analysis of Wind Speed over South Korea for the Flight Safety of HALE UAV (장기체공무인기의 운항안전을 위한 남한지역 고도별 풍속 분석)

  • Cho, Young-Jun;Ha, Jong-Chul;Choi, Reno K.Y.;Kim, Ki-Hoon;Lim, Eunha;Kim, Su-Bok;Yun, Jong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.551-558
    • /
    • 2016
  • We analyzed wind speed over South Korea for HALE UAV(High Altitude Long Endurance Unmaned Aerial Vehicle) flight safety. Annual variation of wind speed at 200 hPa showed that winter season was stronger than summer. According to latitude, wind speeds in January and August were found to be $52{\sim}74m\;s^{-1}$ and $15{\sim}26m\;s^{-1}$, respectively. Wind speed was stronger(weaker) at lower latitudes than higher latitudes in winter(summer). Frequency(%) of wind speed less than threshold value($18m\;s^{-1}$) for the operation date was investigated. The days showing the frequency greater than 60 % in all altitudes of surface ~ 50 hPa showed the range of 1 ~ 33 days at 7 stations. Operation date was the longest period at Gosan. The appropriate date of HALE UAV operation at Gosan and Osan is considered as the middle of July ~ middle of August and end of July ~ early August, respectively. These results can be used to determine the operation date of HALE UAV.

The Analysis of Meterological Environment over Jeju Moseulpo Region for HALE UAV (장기체공무인기를 위한 제주도 모슬포 지역의 기상환경 분석)

  • Cho, Young-Jun;Ahn, Kwang-Deuk;Lee, Hee-Choon;Ha, Jong-Chul;Choi, Reno K.Y.;Cho, Chun-Ho;Kim, Su-Bo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.469-477
    • /
    • 2015
  • In this study, the characteristics of main wind direction, vertical temperature and wind speed profile near the Moseulpo airfield for HALE UAV(High Altitude Long Endurance Unmaned Aerial Vehicle) is investigated. The results are summarized as follows, main wind direction is governed by air mass according to season and local wind such as land-sea breeze. The directions of landing and take-off of HALE UAV will be selected as the south-east direction in June ~ August, north-west direction in October ~ March, and south-east direction at daytime in April ~ May, September. Annual variation of temperature at 100 hPa showed that temperature in summer season is lower than winter season. On the other hands, wind speed at 250 hPa in winter season is higher than summer season. The threshold values of temperature and wind speed for HALE UAV flight are $-75^{\circ}C$ and $90ms^{-1}$, which were determined by 5 % frequency value($1.96{\sigma}$), respectively.

Academic Development Status of Climate Dynamics in Korean Meteorological Society (한국기상학회 기후역학 분야 학술 발전 현황)

  • Soon-Il An;Sang-Wook Yeh;Kyong-Hwan Seo;Jong-Seong Kug;Baek-Min Kim;Daehyun Kim
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.125-154
    • /
    • 2023
  • Since the Korean Meteorological Society was organized in 1963, the climate dynamics fields have been made remarkable progress. Here, we documented the academic developments in the area of climate dynamics performed by members of Korean Meteorological Society, based on studies that have been published mainly in the Journal of Korean Meteorological Society, Atmosphere, and Asia-Pacific Journal of Atmospheric Sciences. In these journals, the fundamental principles of typical ocean-atmosphere climatic phenomena such as El Niño, Madden-Julian Oscillation, Pacific Decadal Oscillation, and Atlantic Multi-decadal Oscillation, their modeling, prediction, and its impact, are being conducted by members of Korean Meteorological Society. Recently, research has been expanded to almost all climatic factors including cryosphere and biosphere, as well as areas from a global perspective, not limited to one region. In addition, research using an artificial intelligence (AI), which can be called a cutting-edge field, has been actively conducted. In this paper, topics including intra-seasonal and Madden-Julian Oscillations, East Asian summer monsoon, El Niño-Southern Oscillation, mid-latitude and polar climate variations and some paleo climate and ecosystem studies, of which driving mechanism, modeling, prediction, and global impact, are particularly documented.