• Title/Summary/Keyword: Metals' ratio

Search Result 657, Processing Time 0.032 seconds

Characteristics of the Powder Type Ag System Insert Metals Made by Ball Milling Method and Brazed Joints (볼 밀링법으로 제조된 브레이징 삽입금속 및 접합 특성)

  • 김광수;이규도;황선효
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.47-54
    • /
    • 2002
  • Powder type Ag system insert metals were manufactured by ball milling process. The variables of milling process such as milling media, revolution speed and powder/ball weight ratio were constant except the milling time. The milling times were selected for 24, 48 and 72 hours. The insert metals made by milling process were evaluated by performing scanning electron microscope, x-ray and DSC(differential scanning calorimetry) analysis, and further in terms of wettability test. The selected insert metals that have the good characteristics compared to commercial insert metals were applied to make the brazed joints of the steel/steel and the steel/WC superhard particles. The characterizations of those brazed joints were also conducted by microstructural observations, shear tensile tests and microhardness measurements. The results indicated that milling time of 48 hours for making powder type insert metals was the best condition showing the small amount of oxides residue, low wetting angle and stable microstructure. The brazed joints that applied the 48 hours milled insert metal were very sound condition indicating the shear tensile value of $2.29{\times}102$ MPa and the microhardness of 138VHN. Further, the amount of the porosity was appeared to be lower than that of the commercial insert metals.

Suppressing Effect of Medicinal Plants on the Intestinal Absorption of Heavy Metals (생약재에 의한 중금속의 체내흡수 억제 효과)

  • Choi, Sung-Inn;Hwang, Jin-Bong;Kwon, Joong-Ho;Kim, Hyun-Ku
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.456-460
    • /
    • 1998
  • This research was attempted to prove suppressing effect of medicinal plants on the intestinal absorption of toxic heavy metals. In vitro study was performed by membrane filtration considering intestinal absorption conditions. From drinking water contaminated singly with 10 and 50 times level of water quality standard for heavy metals, the removal ratio of lead was $40{\sim}60%$ by Chicorium intybus, Angelica acutiloba and Ganoderma lucidium. And the removal ratio of cadmium was $20{\sim}40%$. The removal ratio of lead contaminated with both was $30{\sim}50%$ by every sample similarly, the removal ratio of cadmium was $10{\sim}30%$. The removal ratio of Angelica acutiloba was more higher than Chicorium intybus and Ganoderma lucidium. Considering the extraction conditions of samples, $70^{\circ}C$, 2 min conditions were higher than $95^{\circ}C$, 10 min conditions, the removal ratios of heavy metals were similar. And the membrane filter permeated the material under 500 mw selectively, so the final filtrate could regard as passive transport in intestinal absorption. In conclusion, this research exhibited that the medicinal plants beverages have a suppressing effect on intestinal absorption of lead and cadmium in drinking water.

  • PDF

Effect of Microstructure Change on the Mechanical Properties in Hot-Forged Ultra High Carbon Steel (열간 단조에 의한 고탄소강의 미세조직 변화가 기계적 성질에 미치는 영향)

  • Kang, C.Y.;Kwon, M.K.;Kim, C.H.
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.212-217
    • /
    • 2012
  • This study was carried out to investigate the effect of the hot forging ratio on the microstructure and mechanical properties of ultra high carbon steel. The microstructure of ultra high carbon steel with 1.5%wt.C consisted of a proeutectoid cementite network and acicular microstructure in pearlite matrix. With increasing hot forging ratio, the volume and thickness of the network and acicular proeutectoid cementite decreased. Lamella spacing and the thickness of eutectoid cementite decreased with increasing hot forging raito, and were broken up into particle shapes, which then became spheroidized. When the forging ratio was over 65%, the network and acicula shape of the as-cast state disappeared. With increasing hot forging ratio, hardness, tensile strength, elongation and impact value were not changed up to 50%, and then rapidly increased with the increase of the forging ratio.

Bioremediation of Heavy Metals from the Land Application of Industrial Sewage Sludge with Minari (Oenanthe stolonifer DC.) Plant

  • Lee, Myoung-Sun;Youn, Se-Young;Yim, Sang-Choel;Park, Hee-Joun;Shin, Joung-Du
    • Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.53-59
    • /
    • 1998
  • Laboratory experiments for the removal efficiency of heavy metals in land application of sludge, the accumulation and translocation of heavy metals in x plants after transplanting, and the responses of Minari growth with different ratio of land application of sludge were conducted to determine the potential ability of bioremediation with Minari plants. The removal rate and translocation of copper. zinc. lead. and cadmium in soil and plants were compared after transplanting the Minari plants to soil treated with different ratio of sludge. The removal efficiency of heavy metals in soil incorporated with sludge was different with application ratio, but increased with growing periods of Minari plants. The removal efficiency of Cu, Zn, Pb, and Cd ranged from 67 to 74% from 51% to 63%, from 37% to 71%. and from 15% to 25% after 45 days of transplanting. respectively. The amount removed the copper value. 65.9 mg/kg, observed to be highest in soil incorporated 3% sludge after 45 days. The translocation of Cu. Zn. Pb. and Cd from shoots to roots ranged from 18 to 53%, from 17 to 32%, from 14 to 49%, and from 23 to 38% over growing periods. respectively. In plant responses it appeared to be inhibited the plant growth in the treatment compared with the control at early stage of growth. However, the fresh weights of Minari plant increased from 12.5 to 62.5% in the sludge application after 45 days relative to the control. Therefore the Minari might play a useful role in bioremediation of Cu, Zn, Pb, and Cd in the land application of sludge.

  • PDF

Mechanical Pretreatment of Municipal Waste Incineration Ash for Recovering Heavy Metals by the Horizontal Gyration Method

  • Park, Joonchul;Kaoru Masuda;Yamaguchi Hiroshi;Shigehisa Endoh
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.664-667
    • /
    • 2001
  • Segregation of binary particle systems in a horizontally gyrated bed has been experimentally studied to recover the heavy metals from municipal waste incineration (MWI) ash. Differences in density and size had less effect on segregation. Effective segregation took place under the centrifugal effect of 1 or less for any particle size ratio. Zn, Cu and Pb were concentrated in the upper side of bed by the horizontal vibration. However, there was less change in concentration for other metals such as Mg, Al and Fe etc. The separation system with the horizontal gyrating separator proved to be an effective method for the pretreatment of recovering Zn, Cu and Pb from incineration residues.

  • PDF

Some Trace Metals and their Ratios in Aloe (Aloe vera L.), Cucumber (Cucumis sativus L. var. tuberculatus Gabaj.) and Sponge-gourd (Luffa cylindrica L.) in Korea

  • Lee, Chang-Jun;Park, Jung-Sang;Jang, Gi-Chul;Kim, Sang-Deog A.
    • Korean Journal of Plant Resources
    • /
    • v.22 no.6
    • /
    • pp.540-545
    • /
    • 2009
  • Aloe (Aloe vera L.), cucumber (Cucumis sativus L. var. tuberculatus Gabaj.) and sponge.gourd (Luffa cylindrica L.) are well utilized in Asian countries as traditional medicines and cosmetics, or foods. And we carried out an experiment to see if there are some specific ratios among trace metals on the plants. Though the metal concentrations varied significantly depending on the sampling periods, aloe gel is high in iron (Fe) and calcium (Ca). Cucumber fruit juice is also high in iron (Fe) and potassium (K). Sponge.gourd sap contains a high amount of zinc (Zn) and calcium (Ca). The uses of the previous 3 plant parts are considered to have some relations to their different ratios and of their trace metals.

Separation of Heavy Metals from Metal-EDTA in Spent Soil Washing Solution by using Na2S (Na2S를 이용한 EDTA 토양세척수로부터의 중금속 분리)

  • Oh, Sanghwa;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.103-111
    • /
    • 2015
  • Soil washing with ethylenediaminetetraacetic acid (EDTA) is highly effective in the remediation of soils contaminated with heavy metals. The EDTA recycling process is a requisite for reducing the operating cost. The applicability of Na2S addition on the precipitation of heavy metals from the spent soil washing solution and thereby recycling of EDTA was investigated. Addition of Na2S into the single metal-EDTA and the mixed metal-EDTA solutions ([Na2S]/[metal-EDTA] ratio = 30, reaction time = 30 min and pH = 7~9) was highly effective in the separation of Cu and Pb from metal-EDTA complexes, but not for Ni. The Zn removal efficiency varied with pH and slightly increased upto 40% as the reaction time increased from 0 to 240 min which was longer than those for Cu and Pb. Ca(OH)2 was subsequently added to induce further precipitation of Zn and Ni and to reduce the Na2S dose. At the [Na2S]/[metal-EDTA] ratio of 10, the removal efficiencies of all heavy metals excluding Ni were above 98% with the dose of Ca(OH)2 at 0.002, 0.006 and 0.008 g into 100 mL of Cu-, Pb- and Zn-EDTA solutions, respectively. However, Ca(OH)2 addition was not effective for Ni-EDTA solution. A further research is needed to improve metal removal efficiency and subsequent EDTA recycling for the real application in field-contaminated soils.

Change of Heavy Metals in the Surface Sediments of the Lake Shihwa and Its Tributaries (시화호 및 주변 하천 표층 퇴적물의 중금속 분포 변화)

  • Kim, Kyung-Tae;Kim, Eun-Soo;Cho, Sung-Rok;Park, Jun-Kun;Park, Chung-Kil
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.447-457
    • /
    • 2003
  • In order to understand the distribution of changes of geochemical characteristics in surface sediments according to various environmental changes around the artificial Lake Shihwa, surface sediments were sampled at $13{\sim}15$ sites form 1997 to 1999 and analyzed by C/S analyzer, ICP/MS and AAS. The average $S/C_{org}$ ratio was 0.35 in the surface sediments, which is similar to 0.36, the characteristic ratio of marine sediments. Heavy metal contents and enrichment factors in the surface sediments tended to be decreasing from the head to the mouth of the Lake Shihwa. With the deposition of fine-grained sediments in the central part of lake, anoxic water column induced the sulfides compounds with Cu, Cd and Zn. Metals such as Al, Fe, Cr, Co, Ni, Cu, Zn and Cd except for Mn and Pb showed relatively high correlation coefficients among them. The contents of Cr, Co, Ni, Cu, Zn and Cd in the surface sediments of the lake were two to five times higher than those in the lake before dike construction and also in outer part of the dike. These are mainly due to the Input of untreated industrial and municipal waste-waters into the lake, and the accumulation of heavy metals by limitation of physical mixing. Although metal contents of the surface sediments at the sites near the water-gate due to outer seawater inflow tended to be lower than those during the desalination, heavy metals were deposited in areas around the new industrial complex in the evidence of spatial distribution of heavy metals in the sediments. This is mainly due to the input of untreated waste-waters from tributaries.

A Study on Removal of Heavy Metals (Cu, Zn, and Pb) from Contaminated Soil by Soil Washing (토양세척에 의한 오염토양의 중금속(Cu, Zn, Pb) 제거에 관한 연구)

  • Kim, Myoung-Jin
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.509-520
    • /
    • 2013
  • In this study, heavy metals are removed by soil washing from soils contaminated with Cu, Zn, and Pb, whose maximum concentrations are up to 3350, 1220, and 2240 mg/kg, respectively. Through various soil washing experiments, the optimum conditions, including type and concentration of washing reagent, washing time, mixing ratio of soil and washing reagent, and stirring speed, are derived for effective removal of the heavy metals. It is found that the most effective washing reagent and its concentration are hydrochloric acid and 50 mM, respectively. The most suitable washing time is 30 minutes and the optimal mixing ratio of soil and washing reagent is 1:30 (g/mL). The removal efficiency, on the other hand, is not affected by stirring speed. The removal efficiencies of the heavy metals decrease when washing reagent is reused. Furthermore, the heavy metals are readsorbed onto soil in case of consecutive reuse of washing reagent.

Treatment Characteristics of Acid Mine Drainage by Porous Ceramics using Wood Flour as Pore-forming Agent (목분 기포제를 이용한 산업부산물 소재 다공성 세라믹에 의한 산성광산배수의 처리특성 연구)

  • Lee, Yeong-Nam;Yim, Soo-Bin
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.109-122
    • /
    • 2018
  • This study was conducted to investigate the removal characteristics of heavy metals and sulfate ion from acid mine drainage by porous zeolite-slag ceramics (ZS ceramics) that was prepared by adding wood flour as pore-foaming agent while calcining the mixtures of natural zeolite and converter slag. The batch test showed that the removal efficiency of heavy metals by pellet-type porous ZS ceramics increased as the particle size of wood flour was decreased and as the weight mixing ratio of wood flour to ZS ceramics was increased. The optimal particle size and weight mixing ratio of wood flour were measured to be $75{\mu}m$ and 7~10%, respectively. The removal test with the porous ZS ceramics prepared in these optimal condition showed very high removal efficiencies: more than 98.4% for all heavy metals and 73.9% for sulfate ion. Relative to nonporous ZS ceramics, the increment of removal efficiency of heavy metals by porous ZS ceramics with $75{\mu}m$ and 10% wood flour was 5.8%, 60.5%, 36.9%, 87.7%, 10.3%, and 57.4% for Al, Cd, Cu, Mn, Pb, and Zn, respectively. The mechanism analysis of removal by the porous ZS ceramics suggested that the heavy metals and sulfate ion from acid mine drainage are eliminated by multiple reactions such as adsorption and/or ion exchange as well as precipitation and/or co-precipitation.