• Title/Summary/Keyword: Metalorganic chemical vapor deposition

Search Result 134, Processing Time 0.03 seconds

Crystallographic Orientation Dependence Of Electrical Properties of Carbon-doped GaAs Grown by Low Pressure Metalorganic Chemical Vapor Deposition Using CBr4 (저압 MOCVD로 CBr4 가스를 사용하여 탄소 도핑된 GaAs 에피층의 결정학적 방향에 따른 전기적 성질의 의존성)

  • 손창식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.214-219
    • /
    • 2002
  • In order to elucidate the crystallographic orientation dependence of electrical properties of carbon (C)-doped GaAs epilayers, C incorporation into GaAs epilayers on high-index GaAs substrates with various crystallographic orientations from (100) to (111)A has been performed by a low pressure metalorganic chemical vapor deposition using C tetrabromide ($CBt_4$) as a C source. The hole concentration of C-doped GaAs epilayers rapidly decreases with a hump at (311)A with increasing the offset angle. Although the growth temperature and the V/III ratio are varied, the crystallographic orientation dependence of hole concentration show a same trend. The above behaviors indicate that the bonding strength of As sites on a glowing surface plays an important role in the C incorporation into the high-index GaAs substrates.

Green and Blue Light Emitting InN/GaN Quantum Wells with Nanosize Structures Grown by Metalorganic Chemical Vapor Deposition

  • Kim, Je-Won;Lee, Kyu-Han
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.127-130
    • /
    • 2005
  • The structural and electrical properties of InN/GaN multiple quantum wells, which were grown by metalorganic chemical vapor deposition, were characterized by transmission electron microscopy and electroluminescence measurements. As the quantum well growth time was changed, the wavelength was varied from 451 to 531 nm. In the varied current conditions, the blue LED with the InN MQW structures did not have the wavelength shift. With this result, we can expect that the white LEDs with the InN MQW structures do not show the color temperature changes with the variations of applied currents.

Characteristics of AlGaAs/GaAs Quantum-Well Delta-Doped Channel FET's by Low Pressure Metalorganic Chemical Vapor Deposition (저압 유기금속기상 성장법에 의한 AlGaAs/GaAs 양자 우물에 델타 도우핑된 채널 FET 특성)

  • 장경식;정동호;이정수;정윤하
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.4
    • /
    • pp.33-37
    • /
    • 1992
  • AlGaAs/GaAs quantum well delta-doped channel FET's have been successfully fabricated using by low-pressure metalorganic chemical vapor deposition(LP-MOCVD). The FET's with a gate dimension of 1.8$\mu$m $\times$ 100$\mu$m have a maximum transconductance of 190 mS/mm and a maximum current density of 425 mA/nm. The devices show extremely broad transconductances with a large voltage swing of 2.4V. The S-parameter measurements have indicated that the current gain and power gain cutoff frequencies of the device were 7 and 15 GHz, respectively. These values are among the best performance reported for GaAs based heterojunction FET's with a similar device geometry.

  • PDF

Epitaxy of Self-assembled InAs Quantum Dots on Si Substrates by Atmospheric Pressure Metalorganic Chemical Vapor Deposition (대기압 MOCVD 시스템을 이용하여 Si 기판 위에 자발적으로 형성된 InAs 양자점에 대한 연구)

  • Yoo, Choong-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.527-531
    • /
    • 2005
  • Fully coherent self-assembled InAs quantum dots(QDs) grown on Si (100) substrates by atmospheric pressure metalorganic chemical vapor deposition(APMOCVD) were grown and the effect of growth conditions such as growth rate and growth time on quantum dots' morphology such as densities and sizes was investigated. InAs QDs of 30 - 80 nm in diameters with densities in the range of (0.6 - 1.7) x $10^{10}\;cm^{-2}$ were achieved on Si substrates and InAs layer was changed from 2 dimensional growth to 3 dimensional one at a nominal thickness less than 0.48 ML. This is attributed to the higher ambient pressure of APMOCVD suppressing of In segregation from the 2 dimensional InAs layer. This In segregation looked to disturb the dot formation especially when the growth rate was low so that the dots became less dense and bigger as the growth rate was lower.

Effect of Growth Temperature on the Properties of ZnO Films Grown by MOCVD (MOCVD로 제작한 ZnO의 성장온도에 따른 특성 변화)

  • Seo Hyun-Seok;Jeong Eui-Hyuk;Jo Jung-Yol;Choi Yearn-Ik;Seo O-Gweon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.4 s.13
    • /
    • pp.9-12
    • /
    • 2005
  • Characteristics of ZnO films grown on $Si-SiO_2$ substrates at temperatures of $200\sim400^{\circ}C$ by metalorganic chemical vapor deposition were investigated. The growth rates and mobilities of ZnO films were dependent on growth temperatures. The field-effect mobilities measured in thin-film transistor structure were $15cm^2/Vsec$.

  • PDF

Electrical Properties of $Ba_{1-x}Sr_xTiO_3$ Thin Films Deposited by Metalorganic Chemical Vapor Deposition

  • Yoon, Jong-Guk;Yoon, Soon-Gil;Lee, Won-Jea
    • The Korean Journal of Ceramics
    • /
    • v.1 no.4
    • /
    • pp.204-208
    • /
    • 1995
  • The microstructure and electrical propetries were investigated for polycrystalline $Ba^{1-x}Sr_xTiO_3$(BST) thin films deposited on Pt/Ti/$SiO_2$(PTSS) and Pt/MgO(PM) substrates by metalorganic chemical vapor deposition (MOCVD). BST films on PTSS have coulmnar and porous structures, while on PM have an equiaxied and dense structure. The dielectric constant and a dissipation factor of BST films on PTSS and 20 fC/$\mu \textrm{cm}^3$ on PTSS and 12fC/$\mu \textrm{cm}^2$ on PM was obtained at an applied electric field of 0.06 MV/cm. Leakage current density of BST films on PM was smaller than that on PTSS. The leakage current density level was about $8\times10^{-8}A/\textrm{cm}^2$ at 0.04MV/cm.

  • PDF

Metalorganic chemical vapor deposition of semiconducting ZnO thin films and nanostructures

  • Kim Sang-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.12-19
    • /
    • 2006
  • Metalorganic chemical vapor deposition (MOCYD) techniques have been applied to fabricate semiconducting ZnO thin films and nanostructures, which are promising for novel optoelectronic device applications using their unique multifunctional properties. The growth and characterization of ZnO thin films on Si and $SiO_2$ substrates by MOCYD as fundamental study to realize ZnO nanostructures was carried out. The precise control of initial nucleation processes was found to be a key issue for realizing high quality epitaxial layers on the substrates. In addition, fabrication and characterization of ZnO nanodots with low-dimensional characteristics have been investigated to establish nanostructure blocks for ZnO-based nanoscale device application. Systematic realization of self- and artificially-controlled ZnO nanodots on $SiO_2/Si$ substrates was proposed and successfully demonstrated utilizing MOCYD in addition with a focused ion beam technique.

Growth of InGaN/GaN Multiple Quantum Wells by Metalorganic Chemical Vapor Deposition and Their Structural and Optoelectronic Properties

  • Kim, H.J.;Kwon, S.-Y.;Yim, S.;Na, H.;Kee, B.;Yoon, E.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.88-91
    • /
    • 2002
  • InGaN/GaN multiple quantum wells (MQWs) were grown by metalorganic chemical vapor deposition and their structural and optical properties were studied. When the average In content was increased by increasing TMIn flow rate, PL measurement showed little change in PL peak position and large increase in PL intensity instead. Large changes in PL peak position could be achieved by changing growth temperature. We propose the formation of fixed In content, highly In-rich quantum dot-like phases in InGaN MQWs driven by spinodal decomposition.

  • PDF

Characteristics of (Ba,Sr)RuO$_3$Bottom Electrodes by Liquid Delivery Metalorganic Chemical Vapor Deposition (액체 운반 유기 금속 화학 기상 증착법에 의한 $(Ba,Sr)RuO_3$ 하부전극의 특성)

  • Choe, Eun-Seok;Yun, Sun-Gil
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.997-1000
    • /
    • 2001
  • Conducting perovskite oxide, $(Ba,Sr)RuO_3(BSR)$, which has many advantages for $(Ba,Sr)TiO_3(BST)$ due to their similarity in crystal structure, lattice constant and chemical composition, was prepared on n-type Si (100) by liquid delivery metalorganic chemical vapor deposition(LDMOCVD). The deposition characteristics of BSR were controlled by gas-phase mass-transfer in the experiment. The BSR films deposited at 50$0^{\circ}C$ and oxygen flow rate of 100 sccm(standard cc/min) showed an average roughness of 22 $\AA$and resistivity of 810 $\mu$$\Omega$-cm. The roughness of BSR films with oxygen flow rate showed a close relationship with the resistivity of films. BSR (110) peak shifted toward lower Bragg angle with increase of x in the$(Ba_x,Sr_{1-x})TiO_3$. The resistivity of BSR films increased from 810 to 924 $\mu$$\Omega$-cm with increase of Ba content(x).

  • PDF