• Title/Summary/Keyword: Metallocene Catalyst

Search Result 50, Processing Time 0.028 seconds

Synthesis of Poly(glycidyl azide-co-glycidyl ferrocenyl ether) (Poly(glycidyl azide-co-glycidyl ferrocenyl ether)의 합성)

  • Jung, Haeji
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2019
  • Ferrocene and ferrocene derivatives have been widely used as a burning rate catalyst for composite solid propellants. However, its tendency to migrate through the propellant grain and to crystallize at the surface changes the composition of propellant which results in unpredictable burning rate. To overcome the weakness of ferrocene catalyst, we designed a polymer containing ferrocene, poly(glycidyl azide-co-glycidyl ferrocenyl ether) (GAFP). GAFPs were synthesized from poly(epichlorohydrin-co-glycidyl ferrocenyl ether) (PEGF) which has ferrocenyl ethers in its pendant groups. The structures of GAFPs were confirmed by FT-IR, $^1H$ and $^{13}C$ NMR spectral analyses. Thermal properties of the GAFPs were evaluated using differential scanning calorimeter (DSC). As the contents of ferrocene increased, the glass transition temperature ($T_g$) of the GAFPs shifted to a higher temperature, and the decomposition temperature ($T_d$) decreased because the ferrocene worked as a burning rate catalyst.

Syndiotactic Polymerization of Amino-functionalized Styrenes Using (Pentamethylcyclopentadienyl)titanatrane/MMAO Catalyst System

  • Kim, Young-Jo;Park, Sung-Jin;Han, Yong-Gyu;Do, Young-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1648-1652
    • /
    • 2004
  • A set of unprecedented syndiospecific dimethyl- and diethylamino-functionalized polystyrenes was prepared by catalytically polymerizing the corresponding monomers using (pentamethylcyclopentadienyl)titanatrane/MMAO catalytic system. Dialkylamino-functionalized styrene monomers were synthesized by Wittig reaction from the corresponding aldehyde in high yield. The resulting polymers are soluble in polar organic solvents such as THF and show good thermal stability. The chemical transformation of the syndiospecific poly(4-diethylaminostyrene) also gave new polar polymers, namely syndiotactic poly(4-diethylaminostyrene hydrochloride), which is unattainable by traditional synthetic methods.

Effects of the Chain Length of High α-olefins on the Terpolymerization (High α-olefin의 사슬길이가 삼원공중합에 미치는 영향)

  • Kim, Tae-Wan;Lee, Jun Chul;Park, No-Hyung;Kim, Hyun Ki;Cho, Ur-Ryong;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.329-335
    • /
    • 2012
  • In this study, we synthesized poly(ethylene-ter-high ${\alpha}$-olefin-ter-p-methylstyrene) using Zr metallocene catalyst/borate type cocatalyst system. Various effects of the high ${\alpha}$-olefin (1-hexene, 1-octene, 1-decene, and 1-dodecene) were observed. The structure and composition of the terpolymers were characterized using $^{13}C$ NMR and $^1H$ NMR. Catalytic activity, polymer yield, molecular weight and molecular weight distribution were analyzed according to the chain length of high ${\alpha}$-olefin. We determined morphology, crystallinity and thermal properties of the terpolymers.

Dehydrocoupling of Bis(silyl)alkylbenzenes to Network Polysilanes, Catalyzed by Group 4 Metallocene Combination

  • Kim, Myoung-Hee;Lee, Jun;Moo, Soo-Yong;Kim, Jong-Hyun;Ko, Young Chun;Woo, Hee-Gweon
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • Bis(silyl)alkylbenzenes such as bis(1-sila-sec-butyl)benzene (1) and 2-phenyl-1,3-disilapropane (2) were synthesized in high yields by the reduction of the corresponding chlorosilanes with $LiAlH_4$ in diethyl ether. The dehydrocoupling of 1 and 2 was performed using group IV metallocene complexes generated in situ from $Cp_2MCl_2$/Red-Al and $Cp_2MCl_2$/n-BuLi (M = Ti, Hf), producing two phases of polymers. The TGA residue yields of the insoluble polymers were in the range of 64-74%. The molecular weights of the soluble polymers produced ranged from 700 to 5000 ($M_w$ vs polystyrene using GPC) and from 500 to 900 ($M_w$ vs polystyrene using GPC). The dehydropolymerization of 1 and 2 seemed to initially produce a low-molecular-weight polymer, which then underwent an extensive cross-linking reaction of backbone Si-H bonds, leading to an insoluble network polymer.

Effect of Poly(propylene-co-octene) as a Compatibilizer on Mechanical Properties and Weldline Characteristics of Polypropylene/Poly(ethylene-co-octene) Blends (폴리프로필렌/에틸렌-옥텐 공중합체 블렌드의 기계적 성질 및 웰드라인 물성에 미치는 폴리프로필렌-옥텐 공중합체의 영향에 관한 연구)

  • Koo, Hyo-Seon;Son, Young-Gon
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.251-256
    • /
    • 2011
  • Effect of poly(propylene-co-octene) as a compatibilizer in toughened polypropylene/ poly(ethylene-co-octene) (EOC) was investigated. The EOCs used were metallocene catalyzed commercial linear low density polyethylene and they are elastomeric materials. The poly(propylene-co-octene) was synthesized by metallocene catalyst in our laboratory to be used as a compatibilizer in PP/EOC blends. PP/EOC blends without compatibilizer shows very low mechanical properties in specimens with weldlines while incorporation of a compatibilizer significantly increases the mechanical properties of specimens with weldlines. However, compatibilized PP/EOC blends does not show increased impact property in a weldline free specimen and it is attributed to low molecular weight of the poly(propylene-co-octene) synthesized in present study. It is expected that the poly(propylene-co-octene) having increased molecular weight provides very good performance as an effective compatibilizer in toughened polypropylene/EOC blends.

Redistribution/Dehydrocoupling of Endocrine n-$Bu_3SnH$ to Polystannanes Catalyzed by Group 4 Metallocene Complexes

  • Park, Jaeyoung;Kim, Seongsim;Lee, Beomgi;Cheong, Hyeonsook;Noh, Ji Eun;Woo, Hee-Gweon
    • Journal of Integrative Natural Science
    • /
    • v.5 no.2
    • /
    • pp.79-83
    • /
    • 2012
  • Trialkyltin n-$Bu_3SnH$, an endocrine disruptor, was slowly converted by the catalytic action of group 4 $Cp_2MCl_2$/Red-Al (M = Ti, Zr, Hf) to produce two phases of products: one is an insoluble cross-linked solid, polystannane in 7-23% yield as minor product via redistribution/dehydrocoupling combination process, and the other is an oil, hexabutyldistannane in 69-90% yield as major product via simple dehydrocoupling process. Redistribution/dehydrocoupling process first produced a low-molecular-weight oligostannane possessing partial backbone Sn-H bonds which then underwent an extensive cross-linking reaction of backbone Sn-H bonds, leading to an insoluble polystannane. This is the first exciting example of redistribution/dehydrocoupling of a tertiary hydrostannane catalyzed by early transition metallocenes.

Preparation of (n-BuCp)2ZrCl2 Catalyst Supported on SiO2/MgCl2 Binary Support and its Ethylene-1-hexene Copolymerization (SiO2/MgCl2 이원 담체에 담지된 (n-BuCp)2ZrCl2 합성과 에틸렌-1-헥센 공중합)

  • Carino, Ann Charise;Park, Sang Jun;Ko, Young Soo
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.461-467
    • /
    • 2018
  • In this study, $(n-BuCp)_2ZrCl_2$, was supported on $SiO_2/MgCl_2$ binary support. Before supporting the catalyst, the $SiO_2/MgCl_2$ binary support was surface treated with three different alkyl aluminum compound, namely trimethylaluminum, triethylaluminum, and ethylaluminum sesquichloride. The synthesized surface-treated $SiO_2/MgCl_2$ supported metallocene catalysts were used for the copolymerization of ethylene and 1-hexene. Their catalytic properties and performances were analyzed through BET, XPS analysis, ICP-AES analysis, and FE-SEM. While the resulting copolymers were analyzed through DSC analysis, GPC analysis, 13C-NMR analysis, and FE-SEM. The analysis of synthesized surface-treated $SiO_2/MgCl_2$ supported metallocene catalysts showed that the Zr content of these catalysts is relatively lower compared to that of the catalyst supported on $SiO_2$. This could be attributed to the reduction in the surface area of $SiO_2$ due to the presence of recrystallized $MgCl_2$ and alkyl aluminum. Furthermore, they exhibited a better copolymerization activity compared to that of $SiO_2$ supported catalyst, particularly the EASC-surface treated binary support, which has the highest activity of 1.9 kg PE/($mmol-Zr^*hr$) because EASC acts as a strong Lewis acid. It could also be observed that the larger the ligand of alkyl aluminum used, the rougher the particle surface of the resulting polymer.

Effect of Triethylaluminum/Transition-Metal Ratio on the Physical Properties and Chemical Composition Distributions of Ethylene-Hexene Copolymers Produced by a $rac-Et(Ind)_2ZrCl_2/TiCl_4/MAO/SMB$ Catalyst

  • Park, Hai-Woong;La, Kyung-Won;Song, In-Kyu;Chung, Jin-Suk
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.221-224
    • /
    • 2007
  • A silica-magnesium bisupport (SMB) was prepared by a sol-gel method for use as a support for a metal-locene/Ziegler-Natta hybrid catalyst. The prepared $rac-Et(Ind)_2ZrCl_2/TiCl_4$/MAO(methylaluminoxane)/SMB catalyst was applied to the copolymerization of ethylene with l-hexene using a variable triethylaluminum (TEA)/transition-metal (Ti) ratio and fixed MAO/transition-metal (Zr) ratio. The effect of the Al(TEA)/Ti ratio on the physical properties and chemical composition distributions (CCDs) of the ethylene-hexene copolymers produced by the hybrid catalyst was investigated. In the ethylene-hexene copolymers, two melting temperatures attributed to the metal-locene and Ziegler-Natta catalysts were clearly observed. The number of CCD peaks was increased from six to seven and the temperature region in which the peaks for the short chain branches of the ethylene-hexene copolymer were distributed became lower as the Al(TEA)/Ti ratio was increased from 300 to 400. Furthermore, the temperature regions corresponding to the lamellas in the copolymer became lower and those corresponding to the small lamellas in the copolymer became higher as the Al(TEA)/Ti ratio was increased from 300 to 400. In the copolymer produced with Al(TEA)/Ti = 500, however, only four CCD peaks were observed and the short chain branches were poorly distributed.

Relation of Structural Features of Dinuclear Constrained Geometry Catalysts with Copolymerization Properties of Ethylene and 1-Hexene (이핵 CGC의 구조적인 특성과 에틸렌/1-헥센의 공중합 거동과의 관계)

  • Cao, Phan Thuy My;Nguyen, Thi Le Nhon;Nguyen, Thi Le Thanh;Noh, Seok-Kyun
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.505-512
    • /
    • 2011
  • Effects of structural features of 4 dinuclear constrained geometry catalysts having paraxylene derivative bridge (DCGC) on copolymerization of ethylene and 1-hexene were investigated. The bridges of three catalysts have para-xylene backbone with a different substituent at benzene ring. The substituents were hydrogen (Catalyst 1), isopropyl (Catalyst 2), n-hexyl (Catalyst 3) and 1-octyl (Catalyst 4). It was found that Catalyst 1 having hydrogen as a substituent exhibited the greatest activity among the four dinuclear CGCs. On the other hand, Catalyst 2 containing isopropyl as a substituent showed the smallest activity. Very interestingly, Catalyst 2 was able to produce about 6 times higher molecular weight polymer than Catalyst 3 and 4. Catalyst 3 and 4 having a long alkyl chain substituent revealed the biggest comonomer response to generate polyethylene copolymer containing more than 40% 1-hexene contents. These results suggest that the control of the substituent of para-xylene bridge of dinuclear CGC can provide a proper method to adjust the microstructure of polyethylene copolymers.

Immobilization Metallocene Inside Surface-functionalized Nanopore of Micelle-Templated Silica and its Ethylene Polymerization (표면 기능화된 Micelle-Templated Silica 나노세공 내 메탈로센 담지 및 에틸렌 중합)

  • Lee, Jeong-Suk;Yim, Jin-Heong;Ko, Young-Soo
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.111-116
    • /
    • 2012
  • A functionalization of mesoporous materials with organosilane was carried out via a post-synthesis grafting method and $(n-BuCp)_2ZrCl_2$/methylaluminoxane (MAO) as subsequently immobilized on the functionalized mesoporous materials for ethylene polymerization. Organosilanes having amine, cyano or imidazoline group such as $N$-[(3-trimethoxysilyl)propyl]ethylenediamine (2NS), 4-(triethoxysilyl)butyronitrile (1NCy), 1-(3-triethoxysilylpropyl)-2-imidazoline (2NIm) were used for the surface functionalization of mesoporous materials. In the SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ catalyst preparation, the amount of MAO in feed increased with an decrease in the Zr content of the supported catalyst, and Al content in the supported catalyst increased. The ethylene homopolymerization activity of SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ dramatically increased as the amount of MAO in feed increased. Furthermore, when the immobilization time was 6 hrs, SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ showed the highest activity. The activities of supported 2NS-, 1NCy-, 2NIm-functionalized catalysts decreased in the following order, SBA-15/2NS/ > SBA-15/2NIm/ > SBA-15/1NCy/$(n-BuCp)_2ZrCl_2$. 2NS and 2NIm which have two amine groups per silane molecule were shown to interact with $(n-BuCp)_2ZrCl_2$ strongly compared to 1NCy which has one amine group. Thus, the activities increased with an increase in the nitrogen and the Zr content of the supported catalysts.