• 제목/요약/키워드: Metallizing

검색결과 24건 처리시간 0.01초

Paste의 조성과 입도 변화가 알루미나 세라믹스의 Metallizing에 미치는 영향에 관한 연구 (The Effect of Paste Composition and Particle Size on the Alumina Ceramics Metallizing)

  • 김태송;김성태;김종희
    • 한국세라믹학회지
    • /
    • 제30권5호
    • /
    • pp.347-356
    • /
    • 1993
  • In joining alumina ceramics to metal by using Mo-Mn metallizing process the effects of metallizing thickness, temperature, and the composition of paste on the bond strength and the microstructure of joining interface were investigated. The bond strength variation in the range of metallizing temperature, 1350~155$0^{\circ}C$ was more than 150MPa above 145$0^{\circ}C$ and the optimum metallizing thickness was 30${\mu}{\textrm}{m}$. The optimum contents of Mn in Mo-Mn paste was 5% due to the bond strength decrease with the increase of addition. The effect of SiO2 addition in paste on bond strength was saturated around 200MPa. It was also observed that as the particle size of Mo decreased, the joinning with higher bond strength was shown in spite of low metallizing temperature.

  • PDF

알루미나(Al$_2$O$_3$) 세라믹 표면의 강메탈라이징법에 관한 연구 (A Study on the Copper Metallizing Method of $Al_2$O$_3$ Ceramic Surface)

  • 최영국;김정관
    • Journal of Welding and Joining
    • /
    • 제13권3호
    • /
    • pp.55-64
    • /
    • 1995
  • Metallizing method on ceramic surface is one of the compositing technology of ceramics and metal. The purpose of this study is to make HIC (Hybrid Intergrated Circuit) with copper metallizing method of which copper layer is formed on ceramic substrate by firing in atmosphere in lieu of conventional hybrid microcircuit systems based on noble metal. Metallizing pastes were made from various copper compounds such as Cu$_{2}$O, CuO, Cu, CuS and kaolin. And the screen printing method was used. The characteristics of metallized copper layers were analyzed through the measurement of sheet resistance, SEM, and EDZX. The results obtainted are summarized as follows; 1. The copper metallizing layers on ceramic surface can be formed by firing in air. 2. The metallized layer using Cu$_{2}$O paste showed the smallest sheet resistance among a group of copper chemical compounds. And optimum metallizing conditions are 15 minutes of firing time, 1000.deg.C of firig temperature, and 3 minutes of deoxidation time. 3. The results of EDAX analysis showed mutual diffusion of Cu and Al. 4. The kaolin plays a important role of deepening the penetration of Cu to $Al_{2}$O$_{3}$ ceramics. But if the kaolin content is too much, sheet resistance increases and copper metallizing layer becomes brittle.

  • PDF

Al2O3/Cu 접합에서 Metallizing paste의 조성이 접합강도에 미치는 영향 (The Effect of the Composition of Metallizing Paste on the Bonding Strength in the Joining of Al2O3/Cu to Cu)

  • 윤종혁;박현균
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.65-70
    • /
    • 2013
  • In joining Alumina to copper plate by Mo-Mn metallizing process, the effects of the composition of metallizing paste on the bonding strength were investigated. The bonding strength increased with increasing Mn amount in the paste up to 20% but followed by the decrease with addition of Mn. The maximum bonding strength reached 50MPa at 20%Mn when heated to $1550^{\circ}C$ for 60minute. The addition of Si to the metallizing powder increased the bonding strength of the joint by enhancing the mechanical bonding between the Alumina and the metallizing layer due to the decrease of layer viscosity with the addition of $SiO_2$. It is thought that MnO reacted with $Al_2O_3$ to yield $MnAl_2O_4$ spinel, forming a joint.

알루미나 세라믹과 금속과의 접합거동 (Bonding Behavior of Alumina Ceramic to Metals)

  • 김종희;김정태
    • 한국세라믹학회지
    • /
    • 제16권3호
    • /
    • pp.169-177
    • /
    • 1979
  • The effect of apparent porosity of the fired ceramics, metallizing temperature, and metallizing mixtures on the bond strength in metal-to-ceramic seals was investigated. Three different metallizing compounds were metallized on dense alumina bodies at 1300~$1500^{\circ}C$ in dry hydrogen atmosphere. Bond strength between metal and alumina body was measured by means of nstron test machine. The greater bond strength was observed as the apparent porosity and metallizing temperature was increased. This work indicated that the glassy phase in metallizing mixture, having had sufficient fluidity to migrate into the alumina body, reacted with alumina and thereby forming strong metal-ceramic interface bond. It also showed that the glassy phase having higher thermal expansion cofficient than molybdenum might contribute to the strong bond formation by providing compressive stress around the molybdenum particle.

  • PDF

전자부품용 메탈라이즈드 알루미나 세라믹스의 미세구조 제어 (Microsturcture Control of Metallized Alumina Ceramics for Electronic Devices)

  • 조범래
    • 한국재료학회지
    • /
    • 제11권12호
    • /
    • pp.1086-1090
    • /
    • 2001
  • Composition effects on microstructure and metallizing properties of the alumina sintered body were evaluated to develop the metallized alumina tubes having superior properties for electronic devices. SEM observation revealed that resultant micrographs and fractographs were varied with composition chance of additives and $SiO_2$-rich specimens showed better microstructural characteristics with uniform distribution of fine and round particles than other CaO-rich or MgO-rich ones. The resultant interfacial microstructure of the $SiO_2$-rich metallized alumina tubes also showed good metallizing properties with no defects between layers and uniform thickness of metallizing layer.

  • PDF

알루미나 소결체와 금속간의 접합에 관한 연구 (The Study of Alumina Ceramic to Metal Bonding)

  • 김종희;김형준
    • 한국세라믹학회지
    • /
    • 제15권2호
    • /
    • pp.89-97
    • /
    • 1978
  • The basic mechanism of adherence in sintered high purity alumina ceramic-to-metal bonding was studied. Emphasis was placed on flux composition, porosity of the fired ceramics, and metallizing mixtures. The study was conducted on 95 and 99.5% alumina, using molydbenum-manganese, molybdenum-manganese-silicon dioxide metallizing compositions. Metallizing was performed in wet hydrogen (dew point, +17$^{\circ}C$) at 145$0^{\circ}C$ for 45min. This experiment indicated that adhernece mechanism of ultra high purity alumina ceramic was attributed to formation of $MnAl_2O_$4, and in the case of 95% alumina containing glass, the migration of glass from the interface into the void of the metal coating was the main role to the adhrence. It showed also that greater the bond-strength was resulted as porosity was increased.

  • PDF

소결 알루미나의 금속접합 및 접합강도에 관한 연구 (Mo-Mn Metallizing on Sintered Alumina and It합s Bond Strength)

  • 이준;김영태;장성도;손용배
    • 한국세라믹학회지
    • /
    • 제22권6호
    • /
    • pp.58-70
    • /
    • 1985
  • The bond strength of metal to ceramic sealing in Mo-Mn metallizing was investigated by examining the effects of flux composition in alumina ceramics particle size of molybdenum metal powder wet hydrogen atmosphere and temperature in metallizing. The maximum bond strength was obtained when the glass phase filled almost all the microstructural cavities around the interfacial area with few micropores. Such a favorable microstrcutre waas formed and maximum bond strength was observed between 130$0^{\circ}C$. Also the metal to ceramic bond strength was increased using finer molybdenum metal powder than coarse powder. When content of $SiO_2$ in the flux of alumina ceramics was constant metal to ceramic bond strength was improved with increasing the ratio of CaO to MgO in the flux.

  • PDF