• Title/Summary/Keyword: Metallic species

Search Result 81, Processing Time 0.029 seconds

Nanoparticle Induced Oxidative Stress in Cancer Cells: Adding New Pieces to an Incomplete Jigsaw Puzzle

  • Nogueira, Daniele Rubert;Rolim, Clarice M. Bueno;Farooqi, Ammad Ahmad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4739-4743
    • /
    • 2014
  • Nanotechnology is an emerging field with many promising applications in drug delivery systems. Because of outstanding developments in this field, rapidly increasing research is directed to the development of nanocarriers that may enhance the availability of drugs to the target sites. Substantial fraction of information has been added into the existing scientific literature focusing on the fact that nanoparticles usually generate reactive oxygen species to a greater extent than micro-sized particles. It is worth mentioning that oxidative stress regulates an array of cell signaling cascades that resulted in cancer cell damage. Accumulating experimental evidence over the years has shown that wide-ranging biological mechanisms are triggered by these NPs in cultured cells due to the unique properties of engineered nanoparticles. In this review, we have attempted to provide an overview of the signaling cascades that are activated by oxidative stress in cancer cells in response to different kinds of nanomaterials, including quantum dots, metallic and polymeric nanoparticles.

Application of Atomic Layer Deposition to Solid Oxide Fuel Cells

  • Kim, Eui-Hyun;Ko, Myeong-Hee;Hwang, Hee-Soo;Hwang, Jin-ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.478.2-478.2
    • /
    • 2014
  • Atomic layer deposition (ALD) provides self-limiting processes based on chemisorption-based reactions. Such unique features allow for superior step coverage, atomic-scale control in thickness, and surface-dependent reaction controls. Furthermore, the surface-limited deposition enables the artificial deposition of oxide and/or metallic materials onto the porous systems as long as the supply is guaranteed in terms of time in providing reactant species and removing the byproducts and redundant reactants. The unique feature of atomic layer deposition is applied to solid oxide fuel cells whose incorporates two porous cathode and anode compartments in addition to the ionic electrolyte. Specific materials are deposited to the surface sites of porous electrodes, with the aim to controlling the triple phase boundaries crucial for the optimized SOFC performances. The effect of ALD on the SOFC performance is characterized using current-voltage characteristics in addition to frequency-dependent impedance spectroscopy. The pros and cons of ALD-controlled SOFCs are discussed toward high-performance SOFC systems.

  • PDF

Vapor-quasiliquid-solid (VQS) mechanismof one-dimensional nanostructure growth based Cu catalyst

  • Hien, Vu Xuan;You, Jae-Lok;Jo, Kwang-Min;Kim, Se-Yun;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.112-113
    • /
    • 2014
  • The submicron-rods of $Cu_2O$ with diameters of 100-700 nm and lengths of $2-8{\mu}m$ were synthesized by radio frequency magnetron sputtering. The abundance of Cu species, which is modulated by the $Ar/O_2$ ratio during the sputtering process affect directly to the growths of the $Cu_2O$ branches on the bodies of the submicron-rods. Transmission electron microscopy and elemental mapping reveal that metallic Cu are existed on the heads of the $Cu_2O$ rods. The growth rate, catalyst phase and shape reveal that vapor-quasiliquid-solid was the growth mechanism of the formations of those structures.

  • PDF

Computational Study of Intermetallic Reaction Propagation in Nanoscale Boron/Titanium Metallic Multilayers (보론/티타늄 나노박막다층 내 이종금속간 화학반응 전파특성 해석연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.10-17
    • /
    • 2017
  • The analytical modeling has been established on the self-propagation of intermetallic reaction in the spanwise direction of highly reactive boron and titanium nanoscale multilayers. Assuming that the reaction obeys Arrhenius kinetics, two-dimensional computations are carried out for heat and atomic species diffusion with exothermic reaction model in order to simulate the self-propagation of intermetallic reaction. The effects of bimetallic layer thickness and thickness ratio on the reaction propagation speed are tested and discussed in addition to the assessment of pre-mixing zone effects.

Effects of Interlayer Formation and Thermal Treatment on Field-emission Properties of Carbon Nanotube Micro-tips (계면층 형성 및 열처리가 탄소 나노튜브 미세팁의 전계방출 특성에 미치는 영향)

  • Kim, Bu-Jong;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.1-6
    • /
    • 2013
  • The effects of interlayer formation and thermal treatment on the field-emission properties of carbon nanotubes (CNTs) were investigated. The CNTs were prepared on tungsten (W) micro-tip substrates using the electrophoretic deposition (EPD) method. The interlayers, such as aluminum (Al) and hafnium (Hf) were coated on the W-tips prior to CNT deposition and after the deposition of CNTs all the species were thermally treated at $700^{\circ}C$ for 30 min. The field-emission properties of CNTs were significantly improved by thermal treatment. The threshold electric field for igniting the electron emission was decreased and the emission current was increased. The Raman spectroscopy results indicated that this was attributed mainly to the enhancement of CNTs by thermal treatment. Also, the CNTs deposited on the interlayers showed the remarkably improved results in the long-term emission stability, especially when they were thermally treated. The X-ray photoelectron spectroscopy (XPS) measurement confirmed that this was resulted from the formation of the additional cohesive forces between the CNTs and the underlying interlayers.

Localized Corrosion of Pure Zr and Zircaloy-4

  • Yu, Youngran;Chang, Hyunyoung;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.253-259
    • /
    • 2003
  • Zirconium based alloys have been extensively used as a cladding material for fuel rods in nuclear reactors, due to their low thermal neutron absorption cross-section, excellent corrosion resistance and good mechanical properties at high temperatures. However, a cladding material for fuel rods in nuclear reactors was contact water during long time at high-temperature, so it is necessary to improve the wear and corrosion resistance of the fuel cladding, At ambient environment, there are few data or paper on the characteristic of corrosion in chloride solution and acidic solution. The specimens used in this work are pure Zr and Zircaloy-4. Zircaloy-4 is a specific zirconium-based alloy containing, on a weight percent basis, 1.4% Sn, 0.2% Fe, 0.1% Cr. Pitting corrosion resistance of two alloys by ASTM G48 is higher than that of electrochemical method. Passive film formed on Zircaloy-4 is mainly composed of $ZrO_2$, metallic Sn, and iron species regardless of formation environments. Also, passive film formed on Zr alloys shows n-type semiconductic property on the base of Mott-Schottky plot.

A Study on the Characteristics of Concentrations of Atmospheric Aerosols in Pusan (부산지역의 입자상 대기오염물질의 농도특성에 관한 연구)

  • 최금찬;유수영;전보경
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.2
    • /
    • pp.41-48
    • /
    • 2000
  • This study has been carried out to determine the seasonal characteristics of concentration of various ionic (CI-, NO3-, SO42-, Na+, NH+, K+, Ca2+) and heavy metallic (Pb, Mn, Cu, Ni) species in Pusan from August 1997 to April 1998. The concentrations of CI-, Na+, K+ were higher during summer with 2.98 ${\mu}{\textrm}{m}$/㎥. Seasonal variation of total concentration of but the concentration of NH4+ was higher during winter with 2.46${\mu}{\textrm}{m}$/㎥. Seasonal variation of total concentration of heavy metals(Pb, Cu, Mn, Ni) were 186.0 ng/㎥ in summer, 222.6 ng/㎥ in autumn, and 135.83 ng/㎥ in winter. Over the seasons inspected, the concentration of Mn was higher in coarse particles than fine particles and concentration of Ni was higher in fine particles than coarse particles. during yellow sand period, the concentration of TSP was increased about two times than that of other period. SO42-, Ca2+ concentrations were higher than other ionic components because of soil particles. The concentration of Ni showed 94.62ng/㎥ was increased about 4~5 times than other period. Principal component of the yellow sand, SO42-, Ca2+ could be discreased by rainfall and washout effect of atmospheric aerosol was higher in coarse particles than fine particles. Results from PCA(principal component analysis) showed that major pollutant was NaCl by seasalt particulate and (NH4)2SO4.

  • PDF

SURFACE PROCESSING OF TOOLS AND COMPONENTS BY MEVVA SOURCE ION IMPLANTATION

  • Lin, W.L.;Sang, J.M.;Ding, X.J.;Yuan, X.M.;Xu, J.;Zhang, H.X.;Zhang, X.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.106-114
    • /
    • 1995
  • Direct implantation of metallic ion species has been employed in surface processing of industrial components and tools with very encouraging improvements in recent years. In spite of high technicla effectiveness, this new surface processing technique has not been extensively accepted by industries mainly because of high cost(capital and operating) compared with other competitive surface processing techniques. High current and large implantation area with eliminating the mass analyzer and the beam-scanning unit make metal vapor vacuum are(MEVVA)source ion implantation versatile, simple and cheap to operate and well suited to commercial surface processing. In this paper, the recent development of MEVVA source ion implantation technique ar Beijing Normal University has been reviewed and the results of production trials of several industrial components and tools implanted by MEVVA source ion implantation have been presented and discussed.

  • PDF

A Study on the Optimization of Process Operation & Catalyst Preparing for Commercialization of Formaldehyde Room Temperature Oxidation Catalyst (포름알데히드 상온산화 촉매의 상용화를 위한 촉매 제조 및 공정 운전조건 최적화 연구)

  • Lee, Sanghyun;Park, Inchul;Kim, Sungsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.5-11
    • /
    • 2016
  • In this study, the factors affecting commercialization of $Pt/TiO_2$ catalyst, which can oxidize HCHO at room temperature, was investigated. In order to determine the optimum noble metal loading, the catalytic activity was evaluated by varying the Pt loadings; the best catalytic activity was achieved for 1 wt% of Pt. In addition, the catalyst prepared under the reduction condition showed an excellent HCHO oxidation conversion at room temperature. Based on these results, it was confirmed that the activity could be changed by oxidation state of active metal, and in case of Pt, metallic Pt ($Pt^0$) species was more active on HCHO oxidation at room temperature. As a result of evaluating an effect of space velocity to determine the optimum operating condition, it was found that in the lower space velocity, conversion rate of HCHO was increased due to increase of catalyst bed. Catalytic activity was greater in the presence of moisture than in its absence. Through above results, the key factors for commercialization of oxidation catalyst, which was operated at room temperature even without any additional energy source was confirmed.

Formation Mechanism of Pores in Ni-P Coated Carbon Fiber Prepared by Electroless Plating Upon Annealing (무전해 니켈-인 도금법을 이용하여 도금된 탄소 섬유의 열처리 과정에서 나타나는 다공성 구조 생성 메커니즘 분석)

  • Ham, Seung Woo;Sim, Jong Ki;Kim, Young Dok
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.438-442
    • /
    • 2013
  • In the present work, electroless plating was used for coating thin films consisting mainly of Ni and P on carbon fiber. Structural changes appeared upon the post-annealing at various temperatures of the Ni-P film on carbon fiber was studied using various analysis methods. Scanning, a flat surface structure of Ni-P film on carbon fiber was found after electroless plating of Ni-P film on carbon fiber without post-annealing, whereas annealing at $350^{\circ}C$ resulted the formation of porous structures. With increasing the annealing temperature to $650^{\circ}C$ with an interval of $50^{\circ}C$, the pore size increased, but the density decreased. X-ray diffraction (XRD) showed the existence of metallic Ni, and Ni-P compounds before post-annealing, whereas the post-annealing resulted in the appearance of NiO peaks, and the decrease in the intensity of the peak of metallic Ni. Using X-ray photoelectron spectroscopy (XPS), phosphorous oxides were detected on the surface upon annealing at $650^{\circ}C$, and $700^{\circ}C$, which can be attributed to the phosphorous compounds originally existing in the deeper layers of the Ni films, which undergo sublimation and escape from the film upon annealing. Escape of phosphorous species from the bulk of Ni-P film upon annealing could leave a porous structure in the Ni films. Porous materials can be of potential applications in diverse fields due to their interesting physical properties such as high surface area, and methods for fabricating porous Ni films introduced here could be easily applied to a large-scale production, and therefore applicable in diverse fields such as environmental filters.