• Title/Summary/Keyword: Metallic salt

Search Result 61, Processing Time 0.023 seconds

Dehydropolycondensation of Aminopenols under the Catalytic Action of Metallic Chelate Compounds (I) Effects of the Solvents and Characteristics of the Oligomers Obtained (金屬킬레이트化合物의 觸媒作用에 依한 Aminophenol 類의 酸化的 重縮合反應 (Ⅰ) 溶媒의 效果와 生成重合體의 特性)

  • Choi, Kyu-Suck
    • Journal of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.114-120
    • /
    • 1968
  • Fe-EDTA complex, which is easily formed when Fe salt and EDTA.2Na are mixed in the aqueous medium, is found to be a very effective catalyst in the dehydropolycondensation of aminophenols. In the dehydropolycondensation of aminophenols, the catalyst, Fe(Ⅲ)-EDTA complex (higher oxidation state) is reduced to less stable Fe(Ⅱ)-EDTA complex (lower oxidation state), and the latter is easily oxidized by air to the original higher oxidation state complex, therefore the catalytic action of Fe-EDTA complex is found to be recycled effectively. Under the catalytic action of the above mentioned complex, p-aminophenol is polymerized in the aqueous medium to form the oligomers of p-aminophenol, which the degree of polymerization to be 5 or more. The oligomers formed contain partly quinone nucleus as well as amino and hydroxyl groups. In this study, the effects of the solvents and characteristics of the oligomers are discussed. These types of polymerizations catalyzed by the metallic chelate compounds are considered to be very closely related to the reactions in the living matters.

  • PDF

Electrochemical Decontamination of Metallic Wastes Contaminated with Uranium Compounds (우라늄화합물로 오염된 금속폐기물의 전해제염)

  • 양영미;최왕규;오원진;유승곤
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.11-23
    • /
    • 2003
  • A study on the electrolytic dissolution of SUS-304 and Inconel-600 specimen was carried out in neutral salt electrolyte to evaluate the applicability of electrochemical decontamination process for recycle or self disposal with authorization of large amount of metallic wastes contaminated with uranium compounds generated by dismantling a retired uranium conversion plant in Korea. Although the best electrolytic dissolution performance for the specimens was observed in a Na2s04 electrolyte, a NaNO$_3$ neutral salt electrolyte, in which about 30% for SUS-304 and the same for Inconel-600 in the weight loss was shown in comparison with that in a Na$_2$SO$_4$ solution, was selected as an electrolyte for the electrochemical decontamination of metallic wastes with the consideration on the surface of system components contacted with nitric acid and the compatibility with lagoon wastes generated during the facility operation. The effects of current density, electrolytic dissolution time, and concentration of NaNO$_3$ on the electrolytic dissolution of the specimens were investigated. On the basis of the results obtained through the basic inactive experiments, electrochemical decontamination tests using the specimens contaminated with uranium compounds such as UO$_2$, AUC (ammonium uranyl carbonate) and ADU (ammonium diuranate) taken from an uranium conversion facility were performed in 1M NaNO$_3$ solution with the current density or In mA/$\textrm{cm}^2$. it was verified that the electrochemical decontamination of the metallic wastes contaminated uranium compounds was quite successful in a NaNO$_3$ neutral salt electrolyte by reducing $\alpha$ and $\beta$ radioactivities below the level of self disposal within 10 minutes regardless of the type of contaminants and the degree of contamination.

  • PDF

In-line Monitoring of an Oxide Ion in LiCI Molten Salt Using a YSZ Based Oxide Ion Selective Electrode

  • Cho, Young-Hwan;Jeon, Jong-Seon;Yeon, Jei-Won;Choi, In-Kyu;Kim, Won-Ho
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.415-419
    • /
    • 2004
  • The electrode potential characteristics of a YSZ based membrane metal oxide electrode have been studied in molten LiCL at $700^{\circ}C$ by the potentiometric method. The electrode exhibited a good potential response to log[$O^2$] and data reproducibility. The calibration plot (potential vs. log[$O^2$] was found to be linear, obeying the Nernst equation. The electrode potential showed a good reversibility corresponding to increase/decrease of the oxide ion present in the molten LiCl. The physical and chemical durability appeared to be sound after several repeated uses, resulting in reproducible results. However, "the proposed electrode" failed when metallic Li was present in the melt.

Experimental Observations for Anode Optimization of Oxide Reduction Equipment

  • David Horvath;James King;Robert Hoover;Steve Warmann;Ken Marsden;Dalsung Yoon;Steven Herrmann
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.383-398
    • /
    • 2022
  • The electrochemical behavior was investigated during the electrolysis of nickel oxide in LiCl-Li2O salt mixture at 650℃ by changing several components. The focus of this work is to improve anode design and shroud design to increase current densities. The tested components were ceramic anode shroud porosity, porosity size, anode geometry, anode material, and metallic porous anode shroud. The goal of these experiments was to optimize and improve the reduction process. The highest contributors to higher current densities were anode shroud porosity and anode geometry.

Thermodynamic Calculations on the Chemical Behavior of SrO During Electrolytic Oxide Reduction

  • Jeon, Min Ku;Kim, Sung-Wook;Lee, Sang-Kwon;Choi, Eun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.415-420
    • /
    • 2020
  • Strontium is known as a salt-soluble element during the electrolytic oxide reduction (EOR) process. The chemical behavior of SrO during EOR was investigated via thermodynamic calculations to provide quantitative data on the chemical status of Sr. To achieve this, thermodynamic calculations were conducted using HSC chemistry software for various EOR conditions. It was revealed that SrO reacts with LiCl salt to produce SrCl2, even in the presence of Li2O, and that the ratio of SrCl2 depends on the initial concentration of Li2O dissolved in LiCl. It was found that SrO reacts with Li to produce Sr during EOR and that the reduced Sr reacts with LiCl salt to produce SrCl2. As a result, the proportions of metallic forms were lower in Sr than in La and Nd under various EOR conditions. The thermodynamic calculations indicated that the three chemical forms of SrO, SrCl2, and Sr co-exist in the EOR system under an equilibrium with Li, Li2O, and LiCl.

An Electrochemical Reduction of TiO2 Pellet in Molten Calcium Chloride (CaCl2 용융염에서 TiO2 펠렛의 전기화학적 환원반응 특성)

  • Ji, Hyun-Sub;Ryu, Hyo-Yeol;Jeong, Ha-Myung;Jeong, Kwang-Ho;Jeong, Sang-Mun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 2012
  • A porous $TiO_2$ pellet was electrochemically converted to the metallic titanium by using a $CaCl_2$ molten salt system at $850^{\circ}C$. Ni-$TiO_2$ and graphite electrodes were used as cathode and anode, respectively. The electrochemical behaviour of $TiO_2$ pellet was determined by a constant voltage control electrolysis. Various reaction intermediates such as $CaTiO_3$, $Ti_2O$ and $Ti_6O$ were observed by XRD analysis during electrolysis of the pellet. Once $TiO_2$ pellet was converted to a porous metallic structure, the porous structure disappeared by sintering and shrinking with increasing the reaction time at high temperature.

Corrosion and Photo-Reflection Behavior of Aluminum and Stainless Steel During Immersion Test in Salt Solution (3 wt% NaCl 수용액에서 알루미늄과 스테인리스강의 부식에 따른 광 반사 거동)

  • Cho, Soo Yeon;Na, Hyeon Gyu;Cho, Hye Ri;Moon, Jong Ju;Ahn, Tae-Jung;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.109-114
    • /
    • 2020
  • The photo-reflectance of aluminum and AISI 304 stainless steel during cyclic immersion test in 3 wt% NaCl solution was examined in this study. Overall, corrosion was not recognized by a visual inspection or weight measurement up to 310 h. When evaluated, it was noted that the roughness of the specimens did not change significantly. However, localized corrosion, which is located at the vicinity of intermetallic precipitation of aluminum or at the grain boundary of stainless steel, was confirmed by the use of an optical microscope and scanning electron microscopy after tens of hours of utilizing the corrosion test. In this respect, an increase of the peak intensity for metallic Al after 90 h of test, and for metallic Fe after 153 h was detected from the X-ray photoelectron spectra. In this context, it was shown that from the photo-reflectance spectra, the reflection of the visible light from the tested samples was changed noticeably over the test duration. As a result, the intensity of reflected light was decreased up to 90 h ~ 153 h, and thereafter was shown to increase higher than the initial intensity before the corrosion test.

Identification between Local Wall Thinning and Turbulent Velocity Components by Flow Acceleration Corrosion inside Tee of Pipe System (배관계 티에서 유동가속부식으로 인한 난류속도성분과 국부감육의 관계 규명)

  • Kim, Kyung-Hoon;Lee, Sang-Kyu;Cho, Yun-Su;Hwang, Kyung-Mo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.7
    • /
    • pp.483-491
    • /
    • 2011
  • When pipe components made of carbon steel in nuclear, fossil, and industry are exposed to flowing fluid, wall thinning caused by FAC(flow accelerated corrosion) can be generated and eventually ruptured at the portion of pressure boundary. A study to identify the locations generating local wall thinning and to disclose turbulence coefficient related to the local wall thinning was performed. Experiment and numerical analyses for tee of down scaled piping components were performed and the results were compared. In particular, flow visualization experiment which was used alkali metallic salt was performed to find actual location of local wall thinning inside tee components. To disclose the relationship between turbulence coefficients and local wall thinning, numerical analyses were performed for tee components. The turbulence coefficients based on the numerical analyses were compared with the local wall thinning based on the measured data. From the comparison of the results, the vertical flow velocity component(Vr) flowing to the wall after separating in the wall due to the geometrical configuration and colliding with the wall directly at an angle of some degree was analogous to the configuration of local wall thinning.

Hot Corrosion Behavior of Plasma-Sprayed Partially Stabilized Zirconia Coatings in a Lithium Molten Salt (리튬용융염에서 플라즈마 용사된 부분안정화 지르코니아 코팅층의 고온부식 거동)

  • Cho, Soo-Haeng;Hong, Sun-Seok;Kang, Dae-Seong;Park, Byung-Heong;Hur, Jin-Mok;Lee, Han-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.646-651
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, yttria-stabilized zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at $675^{\circ}C$ for 216 hours in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of $LiCl-Li_2O$ molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts.

Preparation of Sols by Carbon-arc (炭素아-크 (arc)에 依한 Sol의 生成)

  • Chang, Sei-Hun;Kim, Tai-Lin
    • Journal of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.7-9
    • /
    • 1957
  • On sparking carbon-arc in water we found that a inflammable gas was generated. The object of this experiment is to prepare sols of metals by applying the gas mentioned to a solution of metallic salts. As the result of this experiment we found that : 1) By this method we can prepare easily some kinds of Ag-sol from $AgNO_3$ solution in about 30 sec. by adjusting the temperature, the quantity of stabilizer and the concentration of metallic salt. 2) The appropriate concentration of $AgNO_3$ is about 0.01% by volume, that of the stabilizer, 0.9104 N-NaOH is 0.03-2 cc/100 cc of 0.01% $AgNO_3$ solution. And the lower the temperature, the more concentrated the Ag-sol. But to check the possibility of applying this method to metals other than Au and Ag, measurement of the particle size and properties of a sol prepared by this method, should be studied. Especially, we must study what kinds of gases are generated by sparking the carbon-arc in water.

  • PDF