• Title/Summary/Keyword: Metallic plates

Search Result 118, Processing Time 0.024 seconds

Computer Simulation on the Explosive Welding Characteristics of Dissimilar Materials (이종재료의 폭발용접특성 해석에 관한 컴퓨터 시뮬레이션)

  • 김청균;김명구;손원호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3028-3044
    • /
    • 1993
  • A metallic bond of great strength for the same or dissimilar metals can be produced by the explosive welding. The formation of a metallic jet at the interface between the two impacting plates has been simulated using the numerical hydrocode DYNA2D. The mechanism of explosive welding for the wave formation is also analyzed by the computer simulation technique. The microscopic with the experimentally observed behaviour of the explosive welding. The computer simulations of the explosive welding process have proven especially useful for analyzing the mechanism of metallic bones.

Lightweight Metallic Bipolar Plates of PEMFC for a Small Reconnaissance UAV (소형 정찰 UAV를 위한 고분자 전해질막 연료전지의 경량의 금속 분리판)

  • Kim, Ki-In;Lee, Jong-Kwang;Jang, Bo-Sun;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.1031-1037
    • /
    • 2010
  • This paper proposed lightweight aluminum bipolar plates as an alternative for conventional graphite bipolar plates in fuel cell systems used as a power source for small reconnaissance UAVs. Since bipolar plates occupy more than 80% of the total weight of the fuel cell system, lightweight aluminum bipolar plates can improve the overall payload and flight time of the fuel cell UAV. The aluminum and graphite bipolar plates were fabricated to compare the performance of each of them. A 15% higher performance per weight was obtained from aluminum bipolar plates than the graphite bipolar plates. Also, the performance of a single cell using aluminum bipolar plates was evaluated under various operating conditions.

Effect of non-metallic inclusion on susceptibility to lamellar tearing (라멜라 테어 발생감수성에 미치는 비금속개재물의 영향)

  • 방국수;이종봉
    • Journal of Welding and Joining
    • /
    • v.3 no.1
    • /
    • pp.3-10
    • /
    • 1985
  • Lamellar tearing susceptibility and through-thickness tensile ductility have been investigated in $40kg/mm^2 and 50kg/mm^2$ class tensile strength steel plates in terms of cleanliness of non-metallic inclusion and welding condition. The plate which had 0.01% cleanliness of A-type inclusion (MnS) had 61% of the reduction of area in the through-thickness direction and did not show lamellar tearing. Lamellar tearing susceptibility decreased with increasing the preheat and interpass temperature. The plate which had 0.04% cleanliness of A-type inclusion did not show lamellar tearing under the condition of 75.deg. C of preheat and interpass temperature.

  • PDF

Low Velocity Impact Behavior of Metallic Sandwich Plate with a Truss Core (트러스형 내부구조를 가지는 샌드위치 판재의 저속 충격 특성 연구)

  • Jung, Chang-Gyun;Seong, Dae-Yong;Yang, Dong-Yol;Kim, Jin-Suck;Ahn, Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.80-87
    • /
    • 2006
  • Metallic sandwich plate with a truss core has metallic inner structures which have low relative density between a pair of metal skin sheets or face sheets. In this work, low impact tests have been carried out to examine the behavior of sandwich plates with a pyramidal truss core. For the low velocity impact, the impact apparatus of drop weight type has been fabricated. From the results of the experiments, maximum energy absorption is found to happen when the upper sheet fails. The sandwich plate loses its absorption ability as soon as the inner structures have been crashed completely and optimal core thickness has existed to maximize energy absorption. Comparing the metallic sandwich plate with the monocoque plate, the absorbed energy has been improved up to 160 % and the deflection decreased by up to 76%. As a result, the metallic sandwich plate with a truss core is shown to have good material for impact resistance and energy absorption.

Development of PEMFC Metallic Bipolar Plate for Automotive Driving (자동차 구동용 PEMFC 금속계 분리판 개발)

  • Lee, Jong-Chan;Kim, Ki-Jung;Yang, Yoo-Chang;Jeon, Yoo-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.89-92
    • /
    • 2007
  • The metallic bipolar plate in PEMFC is widely used for automotive driving because of its advantages, i) high strength, ii) high chemical stability, iii) low gas permeability and iv) applicability to mass production. Especially, the metallic bipolar plate which is manufactured with the sheet metal stamping process can be applied in automotive PEMFC with less volume and weight because of its thin thickness but the formability and springback problems arise in real manufacturing process. The assessment for formability and springback of metallic bipolar plate should be performed before making stamping die sets. In this work, the methodology for determining the allowable draft angle of flow passage is introduced by using finite element analysis. In analysis results, as the draft angle of flow passage increase, the major strain and thinning is increase with exponential function. The allowable draft angle without fracture is presented by fitting the results. Additionally, the staking results with manufactured metallic bipolar plates by stamping process is presented.

  • PDF

Implementation of Strength Estimation Algorithm on the Metallic Plate Fixation (금속고정용의 강도 평가 알고리즘 구현)

  • Kin, Jeong-Lae;Kim, Kyo-Ho;Lee, Ki-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.45-54
    • /
    • 2009
  • This study was developed the metallic plate for bone fixation in the neurosurgery and general surgery and plates has a finn place in bone operating and treatment. The plates can be realized to bending strength and stiffness for strength estimation. Maximum point of bending curves has a bending point(P) with maximum load which to applied nearly 0.2% offset displacement. The device's sizing has a ${\Phi}13$ and ${\Phi}18$, and algorithm of strength estimation compared a plate(${\Phi}13$, ${\Phi}18$, ${\Phi}13-{\Phi}18$). The bending strength of the curved metallic plate has to evaluate maximum of a 311N, 387N, 410N, 474N. When a displacement preserve with a load, tensile stress through to press a plate is 274N, 324N, 382N, 394N. The algorithm of strength estimation can be used to support estimation of bending strength and stiffness. Their tool bring to settlement in the new basic algorithm for evidence with varied adjustment.

  • PDF

Bending, Vibration and Buckling Analysis of Functionally Graded Material Plates (점진기능재료(FGM) 판의 휨, 진동 및 좌굴 해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.1043-1049
    • /
    • 2008
  • In this paper, we investigate the static response. natural frequencies and buckling loads of functionally graded material (FGM) plates, using a Navier method. The eigenvalues of the FGM plates and shells are calculated by varying the volume fraction of the ceramic and metallic constituents using a sigmoid function, but their Poisson's ratios of the FGM plates and shells are assumed to be constant. The expressions of the membrane. bending and shear stiffness of FGM plates art more complicated combination of material properties than a homogeneous element. In order to validate the present solutions, the reference solutions of rectangular plates based on the classical theory are used. The various examples of composite and FGM structures are presented. The present results are in good agreement with the reference solutions.

The Performance Evaluation of Metallic Bipolar Plates of Fuel Cells for a Small Reconnaissance UAV (소형 정찰 UAV를 위한 연료전지 금속 분리판의 성능 평가)

  • Kim, Ki-In;Lee, Jong-Kwang;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.278-281
    • /
    • 2009
  • The performance of aluminum bipolar plates was evaluated for the lightweight fuel cell system as a power source for a small reconnaissance UAV. Higher performance per weight was obtained from aluminum bipolar plates than the graphite bipolar plates. To check the influence of operating temperature, the performance of a single cell using aluminum bipolar plates was evaluated at 40 / 50 / $60^{\circ}C$. When dry hydrogen and air were used, the finest performance was obtained at $40^{\circ}C$, a lower operating temperature compared with usual operating temperatures.

  • PDF

Compressive and Bending Behaviors of the Shielded Slot Plate Considering Forming Effect for Fuel Cell Application (성형 이력을 고려한 용융탄산염 연료전지용 쉴디드 슬롯 플레이트의 압축 및 굽힘 거동 분석)

  • Lee, C.W.;Yang, D.Y.;Kang, D.W.;Chang, I.G.;Lee, T.W.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.341-347
    • /
    • 2012
  • The metallic bipolar plates of the molten carbonate fuel cell(MCFC) are composed of shielded slot plates and a center-plate. The shielded slot plates support the center-plate and the membrane electrode assembly. Compressive forces are applied to the shielded slot plate in order to increase the contact area between shielded slot plates and the membrane electrode assembly (MEA). In the design of the shielded slot plate, it is necessary to predict the mechanical behavior of the shielded slot plate. The shielded slot plates are manufactured by a three-stage forming process consisting of slitting, preforming and the final forming process. The mechanical behavior of the shielded slot plate is largely affected by the forming process. In this study, the simulation of the three-stage forming process was used to predict the mechanical behavior of the shielded slot plate. The present simulation approach showed good agreements with the experimental results.