• Title/Summary/Keyword: Metallic particles

검색결과 229건 처리시간 0.024초

THREE DIMENSIONAL ATOM PROBE STUDY OF NI-BASE ALLOY/LOW ALLOY STEEL DISSIMILAR METAL WELD INTERFACES

  • Choi, Kyoung-Joon;Shin, Sang-Hun;Kim, Jong-Jin;Jung, Ju-Ang;Kim, Ji-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제44권6호
    • /
    • pp.673-682
    • /
    • 2012
  • Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multi-component metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

黃砂現象의 大氣汚染物質 動態에 關한 硏究 (Dynamics of Air Pollutants during the Yellow Sand Phenomena)

  • 李敏熙;黃奎浩;金恩植;平井英二;丁子哲治;宮崎元一
    • 한국대기환경학회지
    • /
    • 제6권2호
    • /
    • pp.183-191
    • /
    • 1990
  • To check the possible transportation of gaseous air pollutants with the particles of yellow sand in the movement of air masses during the Yellow Sand Phenomenon, the concentrations of such air pollutants as TSP, $SO_2, CO, NO_x, O_3 and N-CH_4$, and wind wpeed were measured during the Yellow Sand Phenomenon (April 8 $\sim 10, 1990) and they were compared with those during the normal times in Korea. Meanwhile dust color of the samples during the Yellow Sand Phenomenon was the color of sand, that during the normal times was dark-brown. The concentrations of dusts; water soluble components, and metallic components of soil-originated elements during the Yellow Sand Phenomenon were higher than those during the normal times. While the metallic components in the dusts during the Yellow Sand Phenomenon were from soil-originated elements, those during the normal times were of both soiloriginated and sea-originated elements. The change of hourly concentrations of air pollutants showed bi-modal distribution during the two periods. Generally, the concentration levels of air pollutants during the Yellow Sand Period were higher than those during the normal times. Although similarity was observed in the primary sources, differences were observed in the dynamics of the secondary sources due to chemical reactions of the air pollutants during the two periods.

  • PDF

Fabrication of Core-Shell Structured Ni-Based Alloy Nanopowder by Electrical Wire Explosion Method

  • Lee, A-Young;Lee, Gwang-Yeob;Oh, Hye-Ryeong;Kim, Hyeon-Ah;Kim, Song-Yi;Lee, Min-Ha
    • 한국분말재료학회지
    • /
    • 제23권6호
    • /
    • pp.409-413
    • /
    • 2016
  • Electrical wire explosion in liquid media is a promising method for producing metallic nanopowders. It is possible to obtain high-purity metallic nanoparticles and uniform-sized nanopowder with excellent dispersion stability using this electrical wire explosion method. In this study, Ni-Fe alloy nanopowders with core-shell structures are fabricated via the electrical explosion of Ni-Fe alloy wires 0.1 mm in diameter and 20 mm in length in de-ionized water. The size and shape of the powders are investigated by field-emission scanning electron microscopy, transmission electron microscopy, and laser particle size analysis. Phase analysis and grain size determination are conducted by X-ray diffraction. The result indicate that a core-shell structured Ni-Fe nanopowder is synthesized with an average particle size of approximately 28 nm, and nanosized Ni core particles are encapsulated by an Fe nanolayer.

Characteristics of Surface Modified Activated Carbons Prepared by Potassium Salt Sequentially After Hydrochloric Acid Treatment

  • Oh, Won-Chun;Park, Chong-Sung;Bae, Jang-Soon;Ko, Young-Shin
    • Carbon letters
    • /
    • 제7권1호
    • /
    • pp.34-41
    • /
    • 2006
  • The objective of this paper is to compare the variation of surface properties by hydrochloric acid pre-treatment and of metallic potassium and their salts loading effect for activated carbon after surfaces transformation by acid. From the results of nitrogen adsorption, each isotherm shows a distinct knee band, which is closely related to the characteristic of microporous carbons with capillary condensation in micropores. In order to present the causes of the differences in surface properties and $S_{BET}$ after the samples were treated with hydrochloric acid, pore structure and surface morphology are investigated by adsorption analysis. X-ray diffraction (XRD) patterns indicate that activated carbons show better performance for metallic potassium and potassium salts by pre-treatment with hydrochloric acid. Scanning electron microscopy (SEM) pictures of potassium/activated carbon particles provide information about the homogeneous distribution of metal or metal complex on the surface. For the chemical composition microanalysis for potassium treatment of the activated carbon pre-treated with hydrochloric acid, samples were analyzed by energy disperse X-ray (EDX). Finally, the type and quality of oxygen groups are determined from the method proposed by Boehm. A positive influence of the acidic groups on the carbon surface by acid treatment is also demonstrated by an increase in the contents of potassium salts with increasing of acidic groups calculated from Boehm titration.

  • PDF

대기 플라즈마 용사공정을 이용한 Cu계 벌크 비정질 금속 코팅의 미세조직 분석과 나노 압입시험을 이용한 상 분석 (Microstructure Evolution of Cu-based BMG Coating during APS Process and Phase Analysis by Nano-indentation Test)

  • 김정환;강기철;윤상훈;나현택;이창희
    • Journal of Welding and Joining
    • /
    • 제27권6호
    • /
    • pp.43-48
    • /
    • 2009
  • In this study, Cu-based bulk metallic glass (BMG) coatings were deposited by atmospheric plasma spraying (APS) process with different process conditions (with- and without hydrogen gas). As adding the hydrogen gas, thermal energy in the plasma flame increased and induced difference in the melting state of the Cu-based BMG particles. The microstructure and mechanical properties of the coatings were analyzed using a scanning electron microscope (SEM) with an energy dispersive spectroscopy (EDS) and nano-indentation tester in the light of phase analysis. It was elucidated by the nano-indentation tests that un-melted region was a mainly amorphous phase which showed discrete plasticity observed as the flow serrations on the load.displacement (P - h) curves, and the curves of solidified region showed lower flow serrations as amorphous phase mingled with crystalline phase. Oxides produced during the spraying process had the highest hardness value among the phases and were well mixed with other phases resulted from the increase in melting degree.

Chemical Poisoning of Ni/MgO Catalyst by Alkali Carbonate Vapor in the Steam Reforming Reaction of DIR-MCFC

  • 문형대;임태훈;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권12호
    • /
    • pp.1413-1417
    • /
    • 1999
  • Chemical poisoning of Ni/MgO catalyst was induced by hot alkali carbonate vapor in molten carbonate fuel cell (MCFC), and the poisoned (or contaminated) catalyst was characterized by TPR/TPO, FTIR, and XRD analysis. Carbonate electrolytes such as K and Li were transferred to the catalyst during DIR-MCFC operation at 650 ℃. The deposition of alkali species on the catalyst consequently led to physical blocking on catalytic active sites and structural deformation by chemical poisoning. TPR/TPO analysis indicated that K species enhanced the reducibility of NiO thin film over Ni as co-catalyst, and Li species lessened the reducibility of metallic Ni by chemical reaction with MgO. FTIR analysis of the poisoned catalyst did not exhibit the characteristic ${\vector}_1$$(D_{3h})$ peaks (1055 $cm^{-1},\;1085\;cm{-1})$ for pure crystalline carbonates, instead a new peak (1120 $cm^{-1})$ was observed proportionally with deformed alkali carbonates. From XRD analysis, the oxidation of metallic Ni into $Ni_xMg_{1-x}O$ was confirmed by the peak shift of MgO with shrinking of Ni particles. Conclusively, hot alkali species induced both chemical poisoning and physical deposition on Ni/MgO catalyst in DIR-MCFC at 650 ℃.

$LaCrO_3$가 분산된 Cr 합금의 구조 및 산화거동 (Structure and Oxidation Behavior of the $LaCrO_3$-dispersed Cr alloys)

  • 전광선;송락현;신동열;조중열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1303-1305
    • /
    • 1998
  • In order to reduce or avoid oxidation problem at operation the interconnects in SOFCs have so far mostly been made of ceramic material. It has high chemical stability both under cathode and anode condition, relatively thermal expansion coefficient that matchs that of electrolyte material YSZ. But this material shown rather weak in the low oxygen atmosphere and thermal shock, and it has lower mechanical strength than alloys. To avoid these problems one may consider to use metals or alloys as materials for interconnects. Metallic interconnects are advantageous because of their high thermal and electronic conductivities. But it has some problems, Those are high thermal expansion and oxidation at high temperature in air. To solve these problems in the interconnection material in this study, $LaCrO_3$-dispersed Cr alloys for metallic interconnector of SOFC have been investigated as a fuction of $LaCrO_3$ content in the range of 5 to 25 vol.%. The Cr alloy were prepared by mixing Cr and $LaCrO_3$ powders in high-energy ball mill for 48h and by sintering under Ar atmosphere with 5vol.% $H_2$ for 10h at $1500^{\circ}C$. The alloys had a relative density of 95% and above. The Cr alloys in composed of two kind of small $LaCrO_3$ and large Cr particles. As the $LaCrO_3$ content increased, the Cr particle size decreased but the $LaCrO_3$ particle size remained contant. Also the oxidation tests show that the $LaCrO_3$-dispersed Cr is very resistant to oxidation in air. These results means that $LaCrO_3$-dispersed Cr is a useful material for metallic interconnect of planar SOFC.

  • PDF

Biomonitoring of Metal Exposure During Additive Manufacturing (3D Printing)

  • Ljunggren, Stefan A.;Karlsson, Helen;Stahlbom, Bengt;Krapi, Blerim;Fornander, Louise;Karlsson, Lovisa E.;Bergstrom, Bernt;Nordenberg, Eva;Ervik, Torunn K.;Graff, Pal
    • Safety and Health at Work
    • /
    • 제10권4호
    • /
    • pp.518-526
    • /
    • 2019
  • Background: Additive manufacturing (AM) is a rapidly expanding new technology involving challenges to occupational health. Here, metal exposure in an AM facility with large-scale metallic component production was investigated during two consecutive years with preventive actions in between. Methods: Gravimetric analyzes measured airborne particle concentrations, and filters were analyzed for metal content. In addition, concentrations of airborne particles <300 nm were investigated. Particles from recycled powder were characterized. Biomonitoring of urine and dermal contamination among AM operators, office personnel, and welders was performed. Results: Total and inhalable dust levels were almost all below occupational exposure limits, but inductively coupled plasma mass spectrometry showed that AM operators had a significant increase in cobalt exposure compared with welders. Airborne particle concentrations (<300 nm) showed transient peaks in the AM facility but were lower than those of the welding facility. Particle characterization of recycled powder showed fragmentation and condensates enriched in volatile metals. Biomonitoring showed a nonsignificant increase in the level of metals in urine in AM operators. Dermal cobalt and a trend for increasing urine metals during Workweek Year 1, but not in Year 2, indicated reduced exposure after preventive actions. Conclusion: Gravimetric analyses showed low total and inhalable dust exposure in AM operators. However, transient emission of smaller particles constitutes exposure risks. Preventive actions implemented by the company reduced the workers' metal exposure despite unchanged emissions of particles, indicating a need for careful design and regulation of the AM environments. It also emphasizes the need for relevant exposure markers and biomonitoring of health risks.

SiC 강화 CFRP 복합재의 파괴거동에 관한 음향방출 적용 (AE Application for Fracture Behavior of SiC Reinforced CFRP Composites)

  • 류영록;윤유성;권오헌
    • 한국안전학회지
    • /
    • 제31권3호
    • /
    • pp.16-21
    • /
    • 2016
  • Carbon Fiber Reinforced Plastic(CFRP) composite with a higher specific strength and rigidity is more excellent than conventional metallic materials or other organic polymer of FRP. It has been widely used in vehicles, aerospaces and high technology industries which are associated with nuclear power fields. However, CFRP laminated composite has several disadvantages as like a delamination, matrix brittleness and anisotropic fibers that are the weak points of the crack initiation. In this present work, the reinforced silicon carbide(SiC) particles were added to the interlayer of CFRP laminates in order to mitigate the physical vulnerability affecting the cracking and breaking of the matrix in the CFRP laminated composite because of excellent specific strength and thermal shock resistance characteristics of SiC. The 1wt% of SiC particles were spread into the CFRP prepreg by using a spray coating method. After that, CFRP prepregs were laminated for the specimen. Also, the twill woven type CFRP prepreg was used because it has excellent workability. Thus the mechanical and fracture behaviors of the twill woven CFRP laminated composite reinforced with SiC particles were investigated with the acoustic emission(AE) method under a fracture test. The results show that the SiC particles enhance the mechanical and fracture characteristics of the twill CFRP laminate composite.

2006 ~ 2008년 황사기간 중 천안시 대기 입자의 특성 변화 (Changes in aerosol characteristics during 2006 ~ 2008 Asian dust events in Cheonan, Korea)

  • 오세원
    • 한국산학기술학회논문지
    • /
    • 제10권7호
    • /
    • pp.1642-1647
    • /
    • 2009
  • 황사기간 중 천안시 대기 입자의 특성 변화를 파악하기 위해, Cascade Impactor를 장착한 High Volume Air Sampler를 이용하여 대기 시료를 채취하여, 대기 입자의 입경별 질량농도 및 이온, 금속 성분의 농도를 황사기간과 비황사기간에 비교 측정하였다. 황사기간 중 일평균 TSP, PM10, PM2.5 평균 농도가 각각 214.9, 160.3, 95.9${\mu}\;g/m^3$으로, 비황사기간에 비해 각각 평균 3.08, 2.58, 1.95배 증가하였으며, 최대 농도는 TSP, PM10, PM2.5가 각각 850.1, 534.4, 233.3${\mu}\;g/m^3$으로, 비황사기간에 비해 각각 12.19, 8.60, 4.76배까지 증가하였다. 황사기간 중 농도의 증가는 미세입자보다는 조대입자에서 현저하였으며, 미세입자와 조대입자 모두 수용성 이온성분의 증가는 미미한 반면, 토양의 주요 구성 성분인 Fe, Al, Ti의 증가가 뚜렷이 관측되어, 토양구성 금속성분이 황사기간 중 입자 농도 증가의 주요원인 물질임을 확인할 수 있었다.