• Title/Summary/Keyword: Metallic catalyst

Search Result 79, Processing Time 0.025 seconds

Reactions of n-Butane of Pd-Zeolite Y Catalyst (Pd-Zeolite Y 촉매에서의 n-Butane의 반응)

  • Chon Hakze;Oh Seung Mo
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.161-164
    • /
    • 1979
  • The effect of acidity and the metal surface area of the Pd loaded zeolite catalysts; prepared from $Ca^{2+}-,\;La^{3+}-,\;NH_4^+-$exchanged Y and dealuminated HY was studied for the reaction of n-butane. The amount of strong acid site determined by the temperature programmed desorption of ammonia increased in the order NaY < CaY < LaY. Total amount of acid site decreased with increasing degree of dealumination, but the portion of strong acid site increased with increasing $SiO_2/Al_2O_3$ ratio. The effective metal surface area determined by the CO adsorption technique was large for those zeolite catalysts having strong acidity. It was found that conversion of n-butane was strongly dependent on the acidity and the effective metal surface area of the catalysts. The fact that the conversion of n-butane was proportional to the effective metal surface area suggests that the dehydrogenation by metallic component is the primary step in the reaction of n-butane.

  • PDF

The Characteristic of NOx Removal Using Catalyst-Corona Discharge (촉매-코로나방전을 이용한 NOx제거 특성)

  • Goh, Hee-Suk;Park, Jae-Yoon;Kim, Jong-Suk;Lee, Soo-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.27-33
    • /
    • 2004
  • The catalytic effect of waterworks sludge on NOx removal in $BaTiO_3$pellets and sludge pellets combined packed-bed plasma reactor with plate-plate electrode geometry is measured for the various conditions. NOx removal rate is about 90[%] at $BaTiO_3$-sludge combined reactor used fresh sludge. $NO_2$ and $O_3$ as byproducts are significantly generated in only $BaTiO_3$ packed-bed plasma reactor, however, in $BaTiO_3$-sludge combined packed-bed reactor, $NO_2$ and $O_3$ are completely removed while $CO_2$ as by-products are observed from FTIR spectra. $NO_2$ and $O_3$ seem to react with metallic molecules, metal oxide, and organic compounds that are generally chlorophyll included in sludge. NOx removal rate increases with $O_2$ concentration increasing. Removal rates $NO_2$ and $O_3$ are independent of operating time and repetition measurement times.

Synthesis and Photocatalytic Properties of Thermally Stable Metal-Oxide Hybrid Nanocatalyst with Ultrathin Oxide Encapsulation

  • Naik, Brundabana;Moon, Song Yi;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.317.2-317.2
    • /
    • 2013
  • Ultrathin oxide encapsulated metal-oxide hybrid nanocatalysts have been fabricated by a soft chemical and facile route. First, SiO2 nanoparticles of 25~30 nm size have been synthesized by modified Stobber's method followed by amine functionalization. Metal nanoparticles (Ru, Rh, Pt) capped with polymer/citrate have been deposited on functionalized SiO2 and finally an ultrathin layer of TiO2 coated on surface which prevents sintering and provides high thermal stability while maximizing the metal-oxide interface for higher catalytic activity. TEM studies confirmed that 2.5 nm sized metal nanoparticles are well dispersed and distributed throughout the surface of 25 nm SiO2 nanoparticles with a 3-4 nm TiO2 ultrathin layer. The metal nanoparticles are still well exposed to outer surface, being enabled for surface characterization and catalytic activity. Even after calcination at $600^{\circ}C$, the structure and morphology of hybrid nanocatalysts remain intact confirm the high thermal stability. XPS spectra of hybrid nanocatalyst suggest the metallic states as well as their corresponding oxide states. The catalytic activity has been evaluated for high temperature CO oxidation reaction as well as photocatalytic H2 generation under solar simulation. The design of hybrid structure, high thermal stability, and better exposure of metal active sites are the key parameters for the high catalytic activity. The maximization of metal-TiO2 interface interaction has the great role in photocatalytic H2 production.

  • PDF

Field Emission Property of Double-walled Carbon Nanotubes Related to Purification and Transmittance (이중벽 탄소나노튜브의 정제와 투과도에 따른 전계방출 특성 평가)

  • Ahn, KiTae;Jang, HyunChul;Lyu, SeungChul;Lee, Hansung;Lee, Naesung;Han, Moonsup;Park, Yunsun;Hong, Wanshick;Park, Kyoungwan;Sok, Junghyun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.79-84
    • /
    • 2011
  • Double-walled carbon nanotubes (DWCNTs) with high purity were produced by the catalytic decomposition of tetrahydrofuran (THF) using a Fe-Mo/MgO catalyst at $800^{\circ}C$. The as-synthesized DWCNTs typically have catalytic impurities and amorphous carbon, which were removed by a two-step purification process consisting of acid treatment and oxidation. In the acid treatment, metallic catalysts were removed in HCl at room temperature for 5 hr with magnetic stirring. Subsequently, the oxidation, using air at $380^{\circ}C$ for 5 hr in the a vertical-type furnace, was used to remove the amorphous carbon particles. The DWCNT suspension was prepared by dispersing the purified DWCNTs in the aqueous sodium dodecyl sulfate solution with horn-type sonication. This was then air-sprayed on ITO glass to fabricate DWCNT field emitters. The field emission properties of DWCNT films related to transmittance were studied. This study provides the possibility of the application of large-area transparent CNT field emission cathodes.

Purification of Single-walled Carbon Nanotubes by HCl Treatment and Analysis of the Field Emission Property (염산에 의한 단중벽 탄소나노튜브 정제와 전자방출 특성 평가)

  • Lyu, SeungChul;Jung, Dami;Ahn, KiTae;Lee, Hansung;Lee, Naesung;Park, Yunsun;Sok, Junghyun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.335-341
    • /
    • 2010
  • High-quality single-walled carbon nanotubes (SWCNTs) were synthesized by catalytic decomposition of $C_2H_2$ using Fe-Mo/MgO catalyst at $800^{\circ}C$. The as-synthesized SWCNTs typically occurred in the form of a bundle with a diameter of 10~20 nm together with amorphous carbon and catalytic impurities, which were removed by a two-step purification process consisting of oxidation and an acid treatment. The oxidation step, using an $O_2$-Ar mixture at $380^{\circ}C$ for 5 hr in a vertical-type furnace and a $HNO_3$ treatment at $100^{\circ}C$ for one hour, was utilized to remove the amorphous carbon particles. Subsequently, metallic catalysts were removed in HCl at room temperature for 5 hr under magnetic stirring. The SWCNT suspension was prepared by dispersing the purified SWCNTs in an aqueous sodium dodecyl benzene sulfonate solution with horn-type sonication. This was then air-sprayed on glass to fabricate CNT field emitters. The samples had a turn-on field value of 4 V/${\mu}m$ and a current density of 0.67 mA/$cm^2$ at 9 V/${\mu}m$. Increasing the HCl treatment time improved the field emission properties.

Enhancement of oxygen evolution reaction of NiCo LDH nanocrystals using Mo doping (Mo 도핑을 이용한 NiCo LDH 나노결정의 산소발생반응 향상)

  • Kyoungwon Cho;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.92-97
    • /
    • 2024
  • To improve the efficiency of water splitting systems for hydrogen production, the high overvoltages of electrochemical reactions caused by catalysts in the oxygen evolution reaction (OER, Oxygen Evolution Reaction) must be reduced. Among them, LDH (Layered Double Hydroxide) compounds containing transition metal such as Ni, are attracting attention as catalyst materials that can replace precious metals such as platinum that are currently used. In this study, nickel foam, an inexpensive metallic porous material, was used as a support, and NiCo LDH (Layered Double Hydroxide) nanocrystals were synthesized through a hydrothermal synthesis process. In addition, changes in the shape, crystal structure, and water decomposition characteristics of the Mo-doped NiCo LDH nanocrystal samples synthesized by doping Mo to improve OER properties were observed.

The Si Microwire Solar Cell Fabricated by Noble Metal Catalytic Etching (Noble metal catalytic etching법으로 제조한 실리콘 마이크로와이어 태양전지)

  • Kim, Jae-Hyun;Baek, Sung-Ho;Choi, Ho-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.278-278
    • /
    • 2009
  • A photovoltaic device consisting of arrays of radial p-n junction wires enables a decoupling of the requirements for light absorption and carrier extraction into orthogonal spatial directions. Each individual p-n junction wire in the cell is long in the direction of incident light, allowing for effective light absorption, but thin in orthogonal direction, allowing for effective carrier collection. To fabricate radial p-n junction solar cells, p or n-type vertical Si wire cores need to be produced. The majority of Si wires are produced by the vapor-liquid-solid (VLS) method. But contamination of the Si wires by metallic impurities such as Au, which is used for metal catalyst in the VLS technique, results in reduction of conversion efficiency of solar cells. To overcome impurity issue, top-down methods like noble metal catalytic etching is an excellent candidate. We used noble metal catalytic etching methods to make Si wire arrays. The used noble metal is two; Au and Pt. The method is noble metal deposition on photolithographycally defined Si surface by sputtering and then etching in various BOE and $H_2O_2$ solutions. The Si substrates were p-type ($10{\sim}20ohm{\cdot}cm$). The areas that noble metal was not deposited due to photo resist covering were not etched in noble metal catalytic etching. The Si wires of several tens of ${\mu}m$ in height were formed in uncovered areas by photo resist. The side surface of Si wires was very rough. When the distance of Si wires is longer than diameter of that Si nanowires are formed between Si wires. Theses Si nanowires can be removed by immersing the specimen in KOH solution. The optimum noble metal thickness exists for Si wires fabrication. The thicker or the thinner noble metal than the optimum thickness could not show well defined Si wire arrays. The solution composition observed in the highest etching rate was BOE(16.3ml)/$H_2O_2$(0.44M) in Au assisted chemical etching method. The morphology difference was compared between Au and Pt metal assisted chemical etching. The efficiencies of radial p-n junction solar Cells made of the Si wire arrays were also measured.

  • PDF

Catalytic Oxidation of Volatile Organic Compounds Over Spent Three-Way Catalysts (배기가스 정화용 폐 자동차 촉매를 이용한 휘발성 유기화합물의 제거)

  • Shim, Wang Geun;Kim, Sang Chai
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.574-581
    • /
    • 2008
  • The optimum regeneration conditions for the regeneration of three way spent catalysts (TWCs), which were taken from automobiles with different driving conditions, were investigated to evaluate the suitability as alternative catalysts for removing VOCs. The spent catalysts were washed with five different acids ($HNO_3$, $H_2SO_4$, $C_2H_2O_4$, $C_6H_8O_7$, and $H_3PO_4$) to remove contaminants and examine the optimum conditions for recovering the catalytic activity. The physicochemical properties of spent and its regenerated TWCs were evaluated by using nitrogen adsorption-desorption isotherms, XRD, and ICP. The relative atomic ratios of contaminants and platinum group metals (PGMs) of the spent TWCs were greatly dependent on the placed positions. The main contaminants formed were lubricant oil additives and metallic components. Also, the regeneration treatment increased the PGMs ratio, BET surface area, and average pore diameter of TWCs. The catalytic activity results indicated that the spent TWCs have the possibility for removing VOCs. Moreover, the employed acid treatments greatly enhanced the catalytic activity of the spent TWCs. Especially, nitric and oxalic acids provided the most improvement in the catalytic behavior. The catalytic activities of the regenerated TWCs were significantly influenced by the containing platinum ratios rather than the removal ratios of contaminants and the changes in the structural properties offered by the acid treatments.

Preparation of Chitosan-Gold and Chitosan-Silver Nanodrug Carrier Using QDs (QDs를 이용한 키토산-골드와 키토산-실버 나노약물전달체 제조)

  • Lee, Yong-Choon;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.200-205
    • /
    • 2016
  • A drug transport carrier could be used for safe send of drugs to the affected region in a human body. The chitosan is adequate for the drug delivery carrier because of adaptable to living body. The gold, a metallic nanoparticles, tends to form a nano complex at rapidly when it combined with chitosan because of its negative charge. having energy from the other, outer gold nano-complex make heat due to its property to release the contained drugs to the target area. Silver could be also formed an useful biocompatible nano-composites with chitosan which should be used as an useful drug transfer carrier because its special ability to protect microbial contamination. Being one of the oxidized nano metals, $Fe_3O_4$ is nontoxic and has been used for its magnetic characteristics. In this study, the control of catalyst, reducing agent, and solvent amount. The chitosan-$Fe_3O_4$-gold & silver nanoshell have been changed to form about 100 nm size by ionic bond between the amine group, an end group of chitosan, and the metal. It was observed the change in order to seek for its optimum reaction condition as a drug transfer carrier.