• 제목/요약/키워드: Metallic Bipolar plate

검색결과 53건 처리시간 0.028초

고분자 전해질형 연료전지용 Au-PTFE/Al 금속분리판 연구 (Study of Au-PTFE/Al Metallic bipolar plate for PEMFC)

  • 유승을;김명환;구영모
    • 신재생에너지
    • /
    • 제3권1호
    • /
    • pp.75-82
    • /
    • 2007
  • Aluminum was used as metallic bipolar plate material to reduce a stack weight. The functional materials such as conductive material, Au and nonconductive material, PTFE [polytetrafluoroethylene] were coated on the bipolar plate to enhance electrical contact and corrosion prevention in PEMFC. The active area of bipolar plate is divided into the top layer part that electric current mainly passes, and the bottom layer part that gas and water pass. The bottom layer part in the flow channel needs not to have electrical conductivity because it doesn't pass electric current directly. In this reason, Au on the top layer and PTFE on the bottom layer were coated to apply high electrical conductivity and/or good corrosion resistance. Although the single cell performance using Au-PTFE/Al bipolar plate was shown 78% in comparison with that of graphite, specific power of Au-PTFE/Al bipolar plate(0.4 W/g) was twice as much as graphite bipolar plate.

  • PDF

자동차 구동용 PEMFC 금속계 분리판 개발 (Development of PEMFC Metallic Bipolar Plate for Automotive Driving)

  • 이종찬;김기정;양유창;전유택
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.89-92
    • /
    • 2007
  • The metallic bipolar plate in PEMFC is widely used for automotive driving because of its advantages, i) high strength, ii) high chemical stability, iii) low gas permeability and iv) applicability to mass production. Especially, the metallic bipolar plate which is manufactured with the sheet metal stamping process can be applied in automotive PEMFC with less volume and weight because of its thin thickness but the formability and springback problems arise in real manufacturing process. The assessment for formability and springback of metallic bipolar plate should be performed before making stamping die sets. In this work, the methodology for determining the allowable draft angle of flow passage is introduced by using finite element analysis. In analysis results, as the draft angle of flow passage increase, the major strain and thinning is increase with exponential function. The allowable draft angle without fracture is presented by fitting the results. Additionally, the staking results with manufactured metallic bipolar plates by stamping process is presented.

  • PDF

저온 PEMFC용 금속분리판 코팅의 내구 특성 연구 (Coating Durability of Metal Bipolar plate for Low Temperature PEMFC)

  • 강성진;전유택
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.82.2-82.2
    • /
    • 2010
  • The development of bipolar plate having high efficiency and chemical properties has a major impact on fuel cell applications commercialization. Even though graphite bipolar plate has high electric conductivity and chemical resistance, it has demerits about mass production and brittle property for commercialization. Hence, metallic bipolar plate can be substitute for fuel cell bipolar plate. Although its inadequate corrosion behavior under PEMFC environment lead to a deterioration of membrane by dissolved metal ions, metallic bipolar plate for PEMFC is more suitable for automotive and residential power generation system because of its high mechanical strength, low gas permeability and applicability to mass production. Therefore, several types of coating has been applied to prevent corrosion and oxide film growth and to achieve more high durability. This work presents durability of coated metal bipolar plate for low temperature PEMFC which made for fuel cell vehicle. This results showed surface treatment increase long-term durability, even electric conductivity and corrosion resistance.

  • PDF

고분자 전해질 연료전지 금속분리판 코팅 내구성 평가 (Development of high durable metallic bipolar plate for Polymer Electrolyte Membrane Fuel Cells)

  • 김민성;서하규;한인수;정지훈;신현길;허태욱;조성백
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.87.1-87.1
    • /
    • 2010
  • Metallic bipolar plate is the one of the promising candidate material for PEMFC because of mechanical strength, low gas permeability, electrical and thermal conductivity. However, the corrosion is the main obstacle of metallic bipolar plate, and many investigations, especially coating on base metal, have been carried out to avoid corrosion. Gold is considered as the one of the best coating material because of its corrosion resistance and electrical conductivity. In this study, gold coated metallic bipolar plate was developed and evaluated. Due to our coating process, gold can be well-adhere to the base material, and hydrophobic material on its gold surface was coated by dipping method for better water management. To verify coating reliability, a single fuel cell(50cm2) was evaluated, and its durability over 4000hrs was demonstrated.

  • PDF

Development of Metallic Bipolar Plate Material with W-addition in Austenitic Stainless Steel for PEMFC Environment

  • Kim, Kwang Min;Koh, Sung Ung;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • 제5권5호
    • /
    • pp.153-159
    • /
    • 2006
  • Austenitic stainless steels with addition of various amounts of Mo and W were evaluated in terms of corrosion and contact resistance to determine optimum alloy composition of metallic bipolar plate for PEMFC. The corrosion property was evaluated by both acid fume exposure test at $130^{\circ}C$ and by electrochemical polarization tests in $H_3PO_4$ solution at $80^{\circ}C$. Austenitic stainless steel with proper amount of Mo and W demonstrated not only good corrosion resistance but also low contact resistance. Analyses on the passive film show that partial substitution of Mo by W enhances passive film stability and repassivation property. Test results suggest that austenitic stainless steel with 2 wt%Mo and 4 wt%W has optimum composition for metallic bipolar plate used in PEMFC.

PEMFC용 금속분리판 코팅 기술 개발 : II. 코팅 금속분리판 연료전지 성능 특성 연구 (Development of Surface Coating Technology for Metallic Bipolar Hate in PEMFC : II. Study on the PEMEC Performance of Coated Metallic Bipolar Plate)

  • 윤용식;정경우;양유창;안승균;전유택;나상묵
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.352-355
    • /
    • 2006
  • As the stainless steel has good corrosion resistance, mechanical property and ease of manufacture, it has been studied as the candidate material of metallic bipolar plate for automotive PIMFC. But, metal is dissolved under fuel cell operating conditions Dissolved ions contaminate a membrane electrode assembly (MEA) and, decrease the fuel cell performance. In addition, metal oxide formation on the surface of stainless steel increases the contact resistance in the fuel cell. These problems have been acted as an obstacle in the application of stainless steel to bipolar plate. Therefore, many kinds of coating technologies have been examined in order to solve these problems. In this study, stainless steel was coated in order to achieve high conductivity and corrosion resistance by several methods. Contact resistance was measured by using a tensile tester and impedance analyzer Corrosion characteristics of coated stainless steel were examined by Tafel-extrapolation method from the polarization curves in a solution simulating the anodic and cathodic environment of PEMFC. Fuel cell performance was also evaluated by single cell test. We tested various coated metal bipolar plate and conventional and graphite were also tested as comparative samples. In the result, coated stainless steel bipolar plate exhibited better cell performance than graphite to bipolar plate.

  • PDF

고분자 전해질 연료전지 금속분리판용 316L 스테인리스강의 양극작동조건에서 염화물 농도에 따른 부식 특성 (Corrosion Characteristics of 316L Stainless Steel with Chloride Concentrations in Cathode Operating Conditions of Metallic Bipolar Plate for PEMFC)

  • 신동호;김성종
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.435-450
    • /
    • 2021
  • The interest in eco-friendly energy is increasing, and polymer electrolyte membrane fuel cell (PEMFC) is attracting attention as alternative power sources. Research on metallic bipolar plates, a fuel cell component, is being actively conducted. However, since the operating conditions of PEMFC, in which sulfuric acid (H2SO4) and hydrofluoric acid (HF) are mixed, are strong acidity, the durability of the metallic bipolar plate is very important. In this research, the electrochemical characteristics and corrosion damage behavior of 316L stainless steel, a material for metallic bipolar plates, were analyzed through potentiostatic corrosion tests with test times and chloride concentrations. As the test times and chloride concentrations increased, the current density and corrosion damage increased. As a result of observation with scanning electron microscope(SEM) and 3D microscope, both the depth and width of pitting corrosion increased with increases in test times and chloride concentrations. In particular, the pitting corrosion damage depth at test conditions of 6 hours and 1000 ppm chloride increased the most. The growth of the pitting corrosion damage was not directly proportional to time and increased significantly after a certain period.

고분자전해질 연료전지용 금속분리판의 특성 및 코팅 기술 (Properties and coating technology of metallic bipolar plate for polymer electrolyte fuel cells)

  • 문성모;이수연;권두영
    • 한국표면공학회지
    • /
    • 제55권3호
    • /
    • pp.133-142
    • /
    • 2022
  • This paper reviews bipolar plate materials and coatings for polymer electrolyte fuel cell. First, six roles and 10 requirements of the bipolar plate are described in detail. Secondly, type of materials for the bipolar plate and their advantages and disadvantages are mentioned. Thirdly, different metallic materials are introduced in terms of electrical and thermal conductivities, corrosion resistance, weight, strength and cost. Finally, various types of coating materials and methods were briefly reviewed.

용융탄산염 연료전지용 초정밀 금속분리판 제작을 위한 굽힘 공정 최적화 (Optimization of Bending Process for the Fabrication of Ultra Precision Metallic Bipolar Plate for Molten Carbonate Fuel Cell)

  • 이창환;류승민;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.345-348
    • /
    • 2008
  • Metallic bipolar plate for molten carbonate fuel cell(MCFC) is composed of the shielded slot plate and the center plate. Among these, the center plate plays an important role in gas sealing. Therefore, manufacturing of the center plate is considered one of the key issues in MCFC. The center plate is manufactured by bending process. In bending process, springback and recoiling are two main problems. The aim of this article is to optimize the bending process of the center plate regardless of springback and recoiling. To achieve this goal, we proposed the punch having step to reduce springback and recoiling. Using finite element method and $L_9$ orthogonal array, we determined the main factors in the center plate bending process. And we found the optimal bending process condition for the MCFC center plate.

  • PDF

금속분리판을 이용한 무인기항공기(UAV)용 경량화 DMFC 스택 개발 (Development of Lightweight Direct Methanol Fuel Cell (DMFC) Stack Using Metallic Bipolar Plates for Unmanned Aerial Vehicles (UAVs))

  • 이수원;김도환;노정호;조영래;김도연;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제28권5호
    • /
    • pp.492-501
    • /
    • 2017
  • A 900 W scale direct methanol fuel cell (DMFC) stack is designed and fabricated for unmanned aerial vehicle (UAV) applications. To meet the volume and weight requirements, metallic bipolar plates are applied to the DMFC stack for the first time wherein POS470FC was chosen as bipolar plate material. To ensure good robustness of the metallic bipolar plate based DMFC stack, finite element method based simulations are conducted using a commercial ANSYS Fluent software. The stress buildup and deformation characteristics on bipolar plates and end plates are analyzed in details. The present DMFC stack exhibits the performance of 1,130 W at 32 V and 35.3 A, clearly demonstrating that it could successfully operate for UAVs requiring around 1,000 W of power.