대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
/
pp.312.2-312.2
/
2002
The metal-ligand complex, [Ru(phen)$_2$(dppz)]^{2+}$ (phen = 1.10-phenanthroline, dppz = dipyrido[3.2-a:2', 3'-c]phenazine) (RuPD), was used as a spectroscopic probe for studying nucleic acid dynamics. The RuPD complex displays a long lifetime and a molecular light switch property upon DNA binding due to shielding of its dppz ligand from water. (omitted)
Label-free, sensitive and selective detection methods with high spatial resolution are critically required for future applications in chemical sensor, biological sensor, and nanospectroscopic imaging. Here I describe the development of Plasmon Resonance Energy Transfer (PRET)-based molecular imaging in living cells as the first demonstration of intracellular imaging with PRET-based nanospectroscopy. In-vivo PRET imaging relied on the overlap between plasmon resonance frequency of gold nanoplasmonic probe (GNP) and absorption peak frequencies of conjugated molecules, which leads to create 'quantized quenching dips' in Rayleigh scattering spectrum of GNP. The position of these dips exactly matched with the absorption peaks of target molecules. As another innovative application of PRET, I present a highly selective and sensitive detection of metal ions by creating conjugated metal-ligand complexes on a single GNP. In addition to conferring high spatial resolution due to the small size of the metal ion probes (50 nm in diameter), this method is 100 to 1,000 folds more sensitive than organic reporter-based methods. Moreover, this technique achieves high selectivity due to the selective formation of Cu2+complexes and selective resonant quenching of GNP by the conjugated complexes. Since many metal ion ligand complexes generate new absorption peak due to the d-d transition in the metal ligand complex when a specific metal ion is inserted into the complex, we can match with the scattering frequency of nanoplasmonic metal ligand systems and the new absorption peak.
Two new metal(II) complexes, $[Mn(dpa)(phen)(H_2O)_2]_n$ (1) ($H_2dpa$ = dephenic acid, phen = 1,10-phenanthroline) and $[Ni_2(nda)(phen)_2(H_2O)_6](nda)(H_2O)$ (2) ($H_2nda$ = 2,6-naphthalenedicarboxylic acid) have been synthesized and characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, and single crystal X-ray diffraction. In complex 1, Mn(II) ion is six-coordinated, and Mn(II) ions are bridged by dpa ligands into 1D chains. While, the complex 2 is dimer and two Ni(II) ions are bridged by one nda ligand cooperated with the terminal ligand phen. In each complex, the dicarboxylate ligand is coordinated to metal(II) ions as a bis-monodentate.
We extended the measurable time scale of DNA dynamics to submicrosecond using a long-lifetime metal-ligand complex, $[Ru(phen)_2(dppz)]^{2+}$ (phen=1,10-phenanthroline, dppz=dipyrido[3,2-a:2',3'-c]phenazine) (RuPD), which displays a mean lifetime near 350 ns. We partially characterized the fluorescence resonance energy transfer (FRET) in calf thymus DNA from RuPD to nile blue (NB) using frequency-domain fluorometry with a high-intensity, blue light-emitting diode (LED) as the modulated light source. There was a significant overlap of the emission spectrum of the donor RuPD with the absorption spectrum of the acceptor NB. The F$\ddot{o}$rster distance ($R_0$) that was calculated from the spectral overlap was $33.4\;{\AA}$. We observed dramatic decreases in the steady-state fluorescence intensities of RuPD when the NB concentration was increased. The intensity decays of RuPD were matched the closest by a triple exponential decay. The mean decay time of RuPD in the absence of the acceptor NB was 350.7 ns. In a concentration-dependent manner, RuPD showed rapid intensity decay times upon adding NB. The mean decay time decreased to 184.6 ns at $100\;{\mu}M$ NB. The FRET efficiency values that are calculated from the mean decay times increased from 0.107 at $20\;{\mu}M$ NB to 0.474 at $100\;{\mu}M$ NB concentration. The use of FRET with a long-lifetime metal-ligand complex donor is expected to offer the opportunity to increase the information about the structure and dynamics of nucleic acids.
Binding geometries of $[Ru(II)(110-phenanthroline)_2L]^2+$, complexes (where L = dipyrido [3,2-a:2',3'-c]phena-zine (DPPZ) or benzodipyrido[3,2-a:2',3'-c] phenazine (BDPPZ)) to poly(dG)${\cdot}$poly(dC)${\cdot}$poly(dC) + triplex DNA (CGC + triplex) has been investigated by linear dichroism and normal absorption spectroscopy. Analysis of the linear dichroism for the CGC+ triplex and $[Ru(II)(phen)_2BDPPZ]^2+$ complex indicates that the extended ligand of the metal complex lie perpendicular to the polynucleotide helix axis. Together with strong hypochromism and red shift in the interligand absorption region, we concluded that the extended BDPPZ or DPPZ ligand in-tercalated between the bases of polynucleotide. The spectral properties of the metal complexes bound to CGC+ triplex are similar to those bound to $poly(dA)[poly(dT)]^2$ triplex (Choi et al., Biochemistry 1997, 36, 214), sug-gesting that the metal complex is located in the minor groove of the CGC+ triplex.
The $N_2O_2$ tetradentate Schiff base ligand, N,N'-bis(salicylidene)pentane-1,3-diamine (Salpn), coupled with 1:2 concentration ratio of 1,3-diaminopentane and salicylaldehyde was used to produce a series of macrocyclic Nikel(II) complexes. In the metal complexation, it was observed that Salpn macrocyclic ligand can adopt more than a metal ion giving an unique multinuclear metal complexes including Ni(II)Salpn and $Ni(II)_3(Salpn)_2$. Characteristic IR ${\upsilon}(M-O)$ peaks for Ni(II)Salpn and $Ni(II)_3(Salpn)_2$ were observed to be $1028cm^{-1}$ and $1024cm^{-1}$, respectively. Characteristic UV-Vis absorption ${\lambda}_{max}$ peaks for $Ni(II)_3(Salpn)_2$ were observed to be 241nm and 401 nm. Structural characterization of $Ni(II)_3(Salpn)_2$ by NMR exhibits that the salicylidene ring moiety has two different resonance signals originated from the magnetically asymmetric diligand and trinuclear bis complex. Complete NMR signal assignments and characterizations elucidating structural features of $Ni(II)_3(Salpn)_2$ were described in detail.
New copper(Ⅱ) complex of the pentaaza non-macrocyclic ligand 1-(2-aminoethyl)-3-(N-{2-aminoethyl}aminomethyl)-1,3-diazacyclohexane (2) and a dinuclear copper(Ⅱ) compex of the bis(macrocyclic) ligand 3, in which two 1,5,8,10,12,15-hexaazabicyclo[11.3.11.5]heptadecane subunits are linked together by an ethylene chain through the uncoordinated nitrogen (N10) atoms, have been prepared selectively by the reaction of the metal ion, 1,4,8-triazaoctane, ethylenediamine, and formaldehyde. The dinuclear complex [Cu2(3)]4+ has been also prepared by the reaction of [Cu(2)]2+ with ethylenediamine and formaldehyde. The reaction products largely depend on the molar ratio of the reactants employed. The mononuclear complex or each macrocyclic subunit of the dinuclear complex contains one 1,3-diazacyclohexane ring and has a square-planar geometry with a 5-6-5 or 5-6-5-6 chelate ring sequence. In acidic solution, the copper(Ⅱ) complex of 2 dissociates more slowly than those of other related non-cyclic polyamines.
The metal-ligand complex, $[Ru(phen)_2(dppz)]^{2+}$ (phen=1,10-phenanthroline, dppz=dipyrido[3,2-a:2',3'-c]phenazine) (RuPD), was used as a spectroscopic probe for studying nucleic acid dynamics. The RuPD complex displays a long lifetime and a molecular light switch property upon DNA binding due to shielding of its dppz ligand from water. To show the usefulness of this luminophore (RuPD) for probing nucleic acid dynamics, we compared its intensity and anisotropy decays when intercalated into the $tRNA^{val}$ and pBluescript (pBS) II SK(+) phagemid through a comparison with ethidium bromide (EB), a conventional nucleic acid probe. We used frequency-domain fluorometry with a blue light-emitting diode (LED) as the modulated light source. The mean lifetime for the $tRNA^{val}$ (<${\tau}$> = 166.5 ns) was much shorter than that for the pBS II SK(+) phagemid (<${\tau}$> = 481.3 ns), suggesting a much more efficient shielding from water by the phagemid. Because of their size difference, the anisotropy decay data showed a much shorter rotational correlation times for the $tRNA^{val}$ (99.9 and 23.6 ns) than for the pBS II SK(+) phagemid (968.7 and 39.5 ns). These results indicate that RuPD can be useful for studying nucleic acid dynamics.
Alhakimi, Ahmed N.;Shakdofa, Mohamad M.E.;Saeed, S. El-Sayed;Shakdofa, Adel M.E.;Al-Fakeh, Maged S.;Abdu, Ashwaq M.;Alhagri, Ibrahim A.
대한화학회지
/
제65권2호
/
pp.93-105
/
2021
Mononuclear Cu(II), Ni(II), Co(II), Mn(II), Zn(II), Fe(III), Ru(III), and UO2(II) complexes of 2-hydroxy-4-(p-tolyldiazenyl)benzylidene)-2-(p-tolylamino)acetohydrazide (H2L) were prepared by direct method. The ligand and its complexes were isolated in solid state and characterized by analytical techniques such as elemental and thermal analyses, molar conductance, magnetic susceptibility measurements and spectroscopic techniques such as UV-Visible, IR, 1H-NMR and 13C-NMR. The spectral data indicated that the ligand acted as neutral/monobasic bidentate or monobasic/dibasic tridentate ligand bonded to the metal ions through the oxygen atom of ketonic or enolic carbonyl group, azomethine nitrogen atom and deprotonated/protonated phenolic oxygen atom forming either tetragonally distorted octahedral or octahedral. Antimicrobial activities of the ligand and its complexes were evaluated against Escherichia coli, Bacillus subtilis and Aspergillus niger by well diffusion method. The results of antifungal activity showed that the Fe(III) complex (10) exhibited higher antifungal against Aspergillus niger than the other complexes. However, the results of antibacterial activity revealed that Cu(II) complex (4) is the most active against Escherichia coli while the Cu(II) complex (5) and Fe(III) complex (10) exhibited higher antibacterial effect on Bacillus subtilis than the other complexes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.