• 제목/요약/키워드: Metal-clad

검색결과 93건 처리시간 0.039초

Effect of CrN barrier on fuel-clad chemical interaction

  • Kim, Dongkyu;Lee, Kangsoo;Yoon, Young Soo
    • Nuclear Engineering and Technology
    • /
    • 제50권5호
    • /
    • pp.724-730
    • /
    • 2018
  • Chromium and chromium nitride were selected as potential barriers to prevent fuel-clad chemical interaction (FCCI) between the cladding and the fuel material. In this study, ferritic/martensitic HT-9 steel and misch metal were used to simulate the reaction between the cladding and fuel fission product, respectively. Radio frequency magnetron sputtering was used to deposit Cr and CrN films onto the cladding, and the gas flow rates of argon and nitrogen were fixed at certain values for each sample to control the deposition rate and the crystal structure of the films. The samples were heated for 24 h at 933 K through the diffusion couple test, and considerable amount of interdiffusion (max. thickness: $550{\mu}m$) occurred at the interface between HT-9 and misch metal when the argon and nitrogen were used individually. The elemental contents of misch metal were detected at the HT-9 through energy dispersive X-ray spectroscopy due to the interdiffusion. However, the specimens that were sputtered by mixed gases (Ar and $N_2$) exhibited excellent resistance to FCCI. The thickness of these CrN films were only $4{\mu}m$, but these films effectively prevented the FCCI due to their high adhesion strength (frictional force ${\geq}1,200{\mu}m$) and dense columnar microstructures.

동피복 복합선재 제조를 위한 연속주조공정의 최적화 (The Optimization of Continuous Casting Process for Production of Copper Clad Steel Wire)

  • 조훈;김대근;황덕영;조형호;김윤규;김영직
    • 한국주조공학회지
    • /
    • 제25권6호
    • /
    • pp.259-264
    • /
    • 2005
  • The copper clad steel wire is used extensively as lead wires of electronic components such as capacitors, diodes and glass sealing lamp because the wire combines the strength and low thermal expansion characteristic of Fe-Ni steel with the conductivity and corrosion resistance of copper. In order to fabricate the copper clad steel wire, several processes including electro-plating, tubecladding extrusion process and dip forming process have been introduced and applied. The electroplating process for the production of copper clad steel wire shows poor productivity and induces environmental load generation such as electroplating solution. The dip forming process is suitable to mass production of copper clad steel such as trolley wire. and need expensive manufacturing facilities. The present paper describes the improvement of the conventional continuous casting process to fabricate copper clad steel wire, which its core metal is low thermal expansion Fe-Ni alloy and its sheath material is copper. In particular, the formation of intermetallic compound at interface between core and sheath was investigated in order to introduce optimum continuous casting process parameter for fabrication of copper clad steel wire with higher electrical conductivity. The mechanical strength of copper clad steel wire was also investigated through wiredrawing process with of 95% in total reduction ratio.

고속 화염 용사 공정을 이용한 스위칭 소자용 BCuP-5 filler 금속/Ag 기판 클래드 소재의 제조, 미세조직 및 접합 특성 (Fabrication, Microstructure and Adhesion Properties of BCuP-5 Filler Metal/Ag Plate Clad Material by Using High Velocity Oxygen Fuel Thermal Spray Process)

  • 주연아;조용훈;박재성;이기안
    • 한국분말재료학회지
    • /
    • 제29권3호
    • /
    • pp.226-232
    • /
    • 2022
  • In this study, a new manufacturing process for a multilayer-clad electrical contact material is suggested. A thin and dense BCuP-5 (Cu-15Ag-5P filler metal) coating layer is fabricated on a Ag plate using a high-velocity oxygen-fuel (HVOF) process. Subsequently, the microstructure and bonding properties of the HVOF BCuP-5 coating layer are evaluated. The thickness of the HVOF BCuP-5 coating layer is determined as 34.8 ㎛, and the surface fluctuation is measured as approximately 3.2 ㎛. The microstructure of the coating layer is composed of Cu, Ag, and Cu-Ag-Cu3P ternary eutectic phases, similar to the initial BCuP-5 powder feedstock. The average hardness of the coating layer is 154.6 HV, which is confirmed to be higher than that of the conventional BCuP-5 alloy. The pull-off strength of the Ag/BCup-5 layer is determined as 21.6 MPa. Thus, the possibility of manufacturing a multilayer-clad electrical contact material using the HVOF process is also discussed.

이중복합봉 정수압 압출시 접합면 거동에 관한 연구 (A Bonding Surface Behavior of Bi-metal Bar through Hydrostatic Extrusion)

  • 박훈재;나경환;조남선;이용신
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.140-143
    • /
    • 1997
  • The present study is concerned with the hydrostatic extrusion process of copper-clad aluminium bar to investigate the basic flow characteristics. Considering the bonding mechanism of bi-metal contact surface as cold pressure welding, the normal pressure and the contact surface expansion are selected as process parameters governing the bonding condition. The critical pressure required for the bonding at the interface is obtained by solving a "local extrusion" using a slip line meyhod. A viscoplastic finite element method is used to analyze the steady state extrusion process. The boundary profile of bi-metal rod is predicted by tracking a particle path adjacent to interface surface. The variations of contact surface area and the normal pressure along the interface profile are predicted and compared to those by experiments.

  • PDF

샌드위치 강판의 전단가공에 있어서 전단면에 미치는 금형 설계 변수의 영향 (Influence of Die Design Variables on the Sheared Surface in Shearing Process of Sandwich Sheet Metal)

  • 김지용;정완진;김종호
    • 소성∙가공
    • /
    • 제14권1호
    • /
    • pp.37-42
    • /
    • 2005
  • In order to invstigate the influence of die design variables on the quality of the sheared surface in cutting of sandwich sheet metals, the cut-off operation is carried out, which is the typical shearing process in sheet metal forming technology. For experiments we made the cut-off die which can be easily adjusted for die design variables such as blankholding force, pad force and clearance. The sandwich sheet metals considered are clad304(STS304-Al1050-STS304) and anti-vibration sheet metal. The shearing process is visualized by the computer vision system installed in front of the cut-off die and the sheared surface is measured and quantitatively compared with the help of the optical microscope after cut-off operation. From test results it is shown that the shearing mechanisms are different according the material of which sandwitch sheet metal is composed. The influence of die design variable is explored and we found optimal conditions for both sandwich sheet metals. It is expected that this investigation can be utilized to get the better sheared surface.

샌드위치 강판의 전단가공에 있어서 전단면에 미치는 금형 설계 변수의 영향 (Influence of die design variables on the sheared surface in cut-off process of sandwich sheet metal)

  • 김지용;최종식;김종호;정완진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.57-61
    • /
    • 2004
  • in order to improve the quality of the sheared surface in cutting of sandwich sheet metals the cut-off operation is mainly investigated which is the typical shearing process in sheet metal forming technology. For experiments the cut-off die is made which can be easily adjusted by die design variables such as blankholding force, pad force, and clearance. The sheet metals chose as specimen are clad304(STS304-Al1050-STS304) and anti-vibration sheet metal. The shearing process is visualized by the computer vision system installed in front of the cut-off die and the sheared surface before and after cut-off operation is measured and quantitatively compared with the help of the optical microscope. From test results the good sheared surface was shown when the clearance gets small with large blankholding force.

  • PDF

열간압연 클래드강의 맞대기용접부 내식성 및 용접성 평가 (Evaluation of Corrosion Resistance and Weldability for the Butt Welding Zone of Hot Rolled Clad Steel Plates)

  • 박재원;이철구
    • Journal of Welding and Joining
    • /
    • 제31권5호
    • /
    • pp.47-53
    • /
    • 2013
  • We have investigated the traits of clad metals in hot-rolled clad steel plates, including the sensitization and mechanical properties of STS 316 steel plate and carbon steel (A516), under various specific circumstances regarding post heat treatment, multilayered welds, and thick or repeated welds for repair. For evaluations, sectioned weldments and external surfaces were investigated to reveal the degree of sensitization by micro vickers hardness, tensile, and etching tests the results were compared with those of EPR tests. The clad steel plates were butt-welded using FCAW and SAW with the time of heat treatment as the variable, a that was conducted at $625^{\circ}C$, for 80, 160, 320, 640, and 1280 min. Then, the change in corrosion resistance was evaluated in these specimens. With carbon steel (A516), as the heat treatment time increased, the annealing effect caused the tensile strength to decrease. The micro-hardness gradually increased and decreased after 640 min. The elongation and contraction of the area also increased gradually. The oxalic acid etch test and EPR test on STS316 and the clad metal showed STEP structure and no sensitization. From the test results on multi-layered and repair welds, it could be concluded that there is no effect on the corrosion resistance of clad metals. The purpose of this study was to suggest some considerations for developing on-site techniques to evaluate the sensitization of stainless steels.

이중복합봉 정수압 압출시 접합면 거동에 관한 연구 (A Bonding Surface Behavior of Bi-metal Bar through Hydrostatic Extrusion)

  • 박훈재;나경환;조남선;이용신
    • 소성∙가공
    • /
    • 제7권1호
    • /
    • pp.66-71
    • /
    • 1998
  • The present study is concerned with the hydrostatic extrusion process of copper-clad aluminium bar to investigate the bonding conditions as well as the basic flow characteristics. Considering the bonding mechanism of bi-metal contact surface as cold pressure welding the normal pressure and the contact surface expansion are selected as process parameters governing the bonding conditions, in this study the critical normal pressure required for the local extrusion-the protrusion of virgin surfaces by the surface expansion at the interface-is obtained using a slip line method and is then used as a criteron for the bonding. A rigid plastic finite element method is used to analyze the steady state extrusion process. The interface profile of bi-metal rod is predicted by tracking the paths of two particles adja-process. The interface profile of bi-metal rod is predicted by tracking the paths of two particles adja-cent to interface surface. The contact surface area ration and the normal pressure along the interface are calculated and compared to the critical normal pressure to check bonding. It is found that the model predictions are generally in good agreement with the experimental observations. The compar-isons of the extrusion pressure and interface profile by the finite element with those by experi-ments are also given.

  • PDF

직접압출에 의한 Cu-Al 층상 복합재료 봉의 계면접합 (Interface Bonding of Copper Clad Aluminum Rods by the Direct Extrusion)

  • 김희남;윤여권;강원영;박성훈;이승평
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.437-440
    • /
    • 2000
  • Composite material consists of more than two materials and make various kinds of composite materials by combining different single materials. Copper clad aluminum composite material is composed of Al and Cu, and it has already been put to practical use in Europe because of its economic benefits. This paper presents the interface bonding according to the variation of extrusion ratio and semi-angle die by observing the interface between Cu and Al using metal microscope. By that result, we can predict the conditions of the interface bonding according to the extruding conditions.

  • PDF