• 제목/요약/키워드: Metal support

검색결과 456건 처리시간 0.027초

Thermally Stabilized Porous Nickel Support of Palladium Based Alloy Membrane for High Temperature Hydrogen Separation

  • Ryi, Shin-Kun;Park, Jong-Soo;Cho, Sung-Ho;Hwang, Kyong-Ran;Kim, Sung-Hyun
    • Corrosion Science and Technology
    • /
    • 제6권3호
    • /
    • pp.133-139
    • /
    • 2007
  • Nickel powder was coated with aluminum nitrate solution to increase the thermal stability of a porous nickel support and control the nickel content in the Pd-Cu-Ni ternary alloyed membrane. Raw nickel powder and alumina coated nickel powder were uniaxialy pressed by home made press with metal cylindrical mold. Though the used nickel powder prepared by pulsed wire evaporation (PWE) method has a good thermal stability, the porous nickel support was too much sintered and the pores of porous nickel support was plugged at high temperature (over $800^{\circ}C$) making it not suitable for the porous support of a palladium based composite membrane. In order to overcome this problem, the nickel powder was coated by alumina and alumina modified porous nickel support resists up to $1000^{\circ}C$ without pore destruction. Furthermore, the compositions of Pd-Cu-Ni ternary alloy membrane prepared by magnetron sputtering and Cu-reflow could be controlled by not only Cu-reflow temperature but also alumina coating amount. SEM analysis and mercury porosimeter analysis evidenced that the alumina coated on the surface of nickel powder interrupted nickel sintering.

페놀의 선택적 수소화 반응성 향상을 위한 Pd/C 촉매의 산 처리 효과 (Effect of Acid Treatment on Pd/C Catalysts for Improving Selective Hydrogenation of Phenol)

  • 박하윤;김예은;제정호;이만식
    • 청정기술
    • /
    • 제30권2호
    • /
    • pp.145-156
    • /
    • 2024
  • 탄소는 비표면적이 매우 크고 우수한 화학적 안정성을 지녀 촉매 지지체로 사용한 연구들이 활발히 진행되고 있다. 탄소를 지지체로 사용하는데 있어 전처리 과정은 필수적이다. 전처리를 통해 금속 입자의 성장을 제어해 안정화하고 지지체와 금속 입자 간 결합력을 향상시킬 수 있다. 본 연구에서는 표면 개질을 위해 탄소의 전처리를 실시하였으며 이를 촉매 지지체로 사용해 5 wt% Pd/C 촉매를 합성하였다. 제조된 촉매의 활성은 페놀 수소화 반응을 통해 평가되었다. 탄소 전처리 시 일반적으로 사용되는 질산과 비교하고자 유기산을 사용해 탄소 전처리를 진행하였고 이를 지지체로 사용해 촉매를 제조하였다. 글루콘산으로 처리된 촉매는 94.93%의 전환율과 92.76%의 사이클로헥사논 선택도를 나타내 질산으로 처리된 촉매보다 우수한 활성을 나타냈다. 따라서 유기산을 이용한 탄소의 전처리가 무기산 처리의 단점을 개선하는 것뿐만 아니라 촉매 성능 개선에 도움을 줄 수 있을 것으로 기대된다.

ATWS Performance of KALIMER Uranium Metal Core

  • Dohee Hahn;Kim, Young C.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.592-597
    • /
    • 1996
  • The KALIMER core, of which nuclear design is largely governed by inherent safety and reactivity control issues, is fueled with metallic fuel, and the initial core will be loaded with 20% enriched Uranium metal fuel. KALIMER safety design objectives include the accommodation of unprotected, ATWS events without operator action, and without the support of active shutdown, shutdown heat removal, or any automatic system without damage to the plant and without jeopardizing public safety. The transient analysis of the core designs has been focused on severe events to assess the margins in the design, and ATWS events are the most severe events that must be accommodated by the KALIMER design. The ATWS performance has been evaluated for the preliminary initial core design of KALIMER with a particular emphasis on the inherent negative reactivity feedback effects, including the Doppler, sodium density, fuel axial expansion, core radial expansion, and control rod driveline expansion. Results show that the Uranium metal core design meets the temperature limits with margin.

  • PDF

ORTHO/PARA 수소의 전환에의 연구 (Study on the Conversion of Ortho to Para Hydrogen)

  • 김종팔;이광현
    • 한국수소및신에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.317-324
    • /
    • 2007
  • The conversion reaction of ortho to para hydrogen was studied. The percentage of ortho and para hydrogen is mainly dependent on the equilibrium temperature. Because this reaction is known to be accelerated by the catalyst such as nickel-silicate and ruthenium on silica, we focused in the test and development of the catalysts. We studied metal-silicates because they provide high metal dispersion on support. Nickel-silicate, ruthenium-silicate and mixed-silicate were prepared by the coprecipitation method and used in the reaction at the temperature of liquid nitrogen. The conversion was measured by the difference of thermal conductivity between reference gas and sample gas. The activation condition was important and it affected the activities of the catalysts. Nickel-silicate showed high activities. Ruthenium-silicate also showed relative high activities but mixed-silicate showed poor activities.

HSS강판 판재성형 시 스프링백 최소화를 위한 드로우 비드 최적 설계 (Bead Optimization to Reduce Springback of Sheet Metal Forming using High Strength Steel)

  • 홍석무;황지훈
    • 한국생산제조학회지
    • /
    • 제23권4호
    • /
    • pp.350-354
    • /
    • 2014
  • Recently, high strength steel (HSS) sheet metal has been widely used to improve lightweight structures in the automotive industry. Because HSS sheets have high strength but low elongation, it is difficult both to make products with complex shapes and to control excessive springback. In order to reduce the springback after forming using HSS, draw beads were introduced in this study. The design variables, including the draw-bead positions and shapes, were optimized using a finite element analysis. A mold for a scanner support, which is part of an A3 printer, was designed using the proposed method and then utilized. The results from a finite element simulation and optimization were compared with the experiment results.

장거리 열수송을 위한 메탄올 분해 촉매에 대한 실험적 연구 (An experimental study on methanol decomposition catalysts for long distance-heat transportation)

  • 문승현;박성룡;윤형기;윤기준
    • 설비공학논문집
    • /
    • 제10권3호
    • /
    • pp.334-342
    • /
    • 1998
  • In this experimental study, methanol was chosen as a system material for a long -distance heat transportation. Not only transition metals but also noble metals were investigated as an active component, and several metal oxides, such as ${\gamma}$-$Al_2$,$O_3$, $SiO_2$, etc. as a support. In general, transition metal catalysts absorbed more heat than noble metal catalysts. The amount of heat absorption and CO selectivity depends on temperature and methanol partial pressure, and 25$0^{\circ}C$ Ni/$SiO_2$ catalyst showed the best result for methanol decomposition reaction.

  • PDF

Direct Metal Laser Sintering-New Possibilities in Biomedical Part Manufacturing

  • Kotila, Juha;Syvanen, Tatu;Hanninen, Jouni;Latikka, Maria;Nyrhila, Olli
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.248-249
    • /
    • 2006
  • Direct Metal Laser Sintering (DMLS) has been utilized for prototype manufacturing of functional metal components for years now. During this period the surface quality, mechanical properties, detail resolution and easiness of the process have been improved to the level suitable for direct production of complex metallic components for various applications. The paper will present the latest DMLS technology utilizing EOSINT M270 laser sintering machine and EOSTYLE support generation software for direct and rapid production of complex shaped metallic components for various purposes. The focus of the presentation will be in rapid manufacturing of customized biomedical implants and surgical devices of the latest stainless steel, titanium and cobalt-chromium-molybdenum alloys. In addition to biomedical applications, other application areas where complex metallic parts with stringent requirements are being needed will be presented.

  • PDF

일반화 서포트벡터 분위수회귀에 대한 연구 (Generalized Support Vector Quantile Regression)

  • 이동주;최수진
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.107-115
    • /
    • 2020
  • Support vector regression (SVR) is devised to solve the regression problem by utilizing the excellent predictive power of Support Vector Machine. In particular, the ⲉ-insensitive loss function, which is a loss function often used in SVR, is a function thatdoes not generate penalties if the difference between the actual value and the estimated regression curve is within ⲉ. In most studies, the ⲉ-insensitive loss function is used symmetrically, and it is of interest to determine the value of ⲉ. In SVQR (Support Vector Quantile Regression), the asymmetry of the width of ⲉ and the slope of the penalty was controlled using the parameter p. However, the slope of the penalty is fixed according to the p value that determines the asymmetry of ⲉ. In this study, a new ε-insensitive loss function with p1 and p2 parameters was proposed. A new asymmetric SVR called GSVQR (Generalized Support Vector Quantile Regression) based on the new ε-insensitive loss function can control the asymmetry of the width of ⲉ and the slope of the penalty using the parameters p1 and p2, respectively. Moreover, the figures show that the asymmetry of the width of ⲉ and the slope of the penalty is controlled. Finally, through an experiment on a function, the accuracy of the existing symmetric Soft Margin, asymmetric SVQR, and asymmetric GSVQR was examined, and the characteristics of each were shown through figures.

Influence of Surface Treatment on Adhesion between Pt Nanoparticle and Carbon Support

  • Kim, Jong Hun;Choi, Han Shin;Yuk, Youngji;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.598-598
    • /
    • 2013
  • The short lifetime of Proton Exchange Membrane Fuel Cell (PEMFC) is the one of the main problems to be solved for commercializing. Especially, the weak adhesion between metal nanoparticles and supports deteriorate the performances of nanocatalysts, therefore, it is considered to be a major failure mechanism. Using force-distance spectroscopy of atomic force microscopy (AFM), we characterized the adhesion between Pt nanoparticles and carbon supports that is crucially related to the durability for membrane fuel cell (MFC) electrode. In our study, force distance curves measured with Pt coated AFM cantilever, mimicking the behavior of corresponding nanoparticles on carbon supports, leads to the adhesion between metal nanoparticles and carbon supports. We found that theadhesion between Pt and HNO3-treated carbon is enhanced by a factor of 4, compared to Pt and bare carbon support, that is consistent with the macroscopic durability test of PEMFC. The higher adhesion between Pt and HNO3-treated carbon can be explained in light of the stronger chemical interaction by C/O functional groups.

  • PDF

Effect of Preparation Conditions on the Hydrogenation Activity and Metal Dispersion of Pt/C and Pd/C Catalysts

  • Jhung, Sung-Hwa;Lee, Jin-Ho;Lee, Jong-Min;Lee, Ji-Hye;Hong, Do-Young;Kim, Myong-Woon;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권4호
    • /
    • pp.563-568
    • /
    • 2005
  • The Pt/C and Pd/C catalysts were prepared from conventional chloride precursors by adsorption or precipitation-deposition methods. Their activities for hydrogenation reactions of cyclohexene and acetophenone were compared with those of commercial catalysts. The Pt/C and Pd/C catalysts obtained from the adsorption procedure reveal higher hydrogenation activity than commercial catalysts and the catalysts prepared by the precipitation-deposition method. Their improved performances are attributed to the decreased metal crystallite sizes of Pt or Pd formed on the active carbon support upon the adsorption of the precursors probably due to the same negative charges of the chloride precursor and the carbon support. Under the preparation conditions studied, the reduction of the supported catalysts using borohydrides in liquid phase is superior to a gas phase reduction by using hydrogen in the viewpoint of particle size, hydrogenation activity and convenience.