DOI QR코드

DOI QR Code

페놀의 선택적 수소화 반응성 향상을 위한 Pd/C 촉매의 산 처리 효과

Effect of Acid Treatment on Pd/C Catalysts for Improving Selective Hydrogenation of Phenol

  • 박하윤 (한국생산기술연구원 울산기술실용화본부) ;
  • 김예은 (한국생산기술연구원 울산기술실용화본부) ;
  • 제정호 (부산대학교 응용화학공학부) ;
  • 이만식 (한국생산기술연구원 울산기술실용화본부)
  • Hayoon Park (Ulsan Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Ye Eun Kim (Ulsan Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Jungho Jae (School of Chemical Engineering, Pusan National University) ;
  • Man Sig Lee (Ulsan Division, Korea Institute of Industrial Technology (KITECH))
  • 투고 : 2024.05.08
  • 심사 : 2024.06.15
  • 발행 : 2024.06.30

초록

탄소는 비표면적이 매우 크고 우수한 화학적 안정성을 지녀 촉매 지지체로 사용한 연구들이 활발히 진행되고 있다. 탄소를 지지체로 사용하는데 있어 전처리 과정은 필수적이다. 전처리를 통해 금속 입자의 성장을 제어해 안정화하고 지지체와 금속 입자 간 결합력을 향상시킬 수 있다. 본 연구에서는 표면 개질을 위해 탄소의 전처리를 실시하였으며 이를 촉매 지지체로 사용해 5 wt% Pd/C 촉매를 합성하였다. 제조된 촉매의 활성은 페놀 수소화 반응을 통해 평가되었다. 탄소 전처리 시 일반적으로 사용되는 질산과 비교하고자 유기산을 사용해 탄소 전처리를 진행하였고 이를 지지체로 사용해 촉매를 제조하였다. 글루콘산으로 처리된 촉매는 94.93%의 전환율과 92.76%의 사이클로헥사논 선택도를 나타내 질산으로 처리된 촉매보다 우수한 활성을 나타냈다. 따라서 유기산을 이용한 탄소의 전처리가 무기산 처리의 단점을 개선하는 것뿐만 아니라 촉매 성능 개선에 도움을 줄 수 있을 것으로 기대된다.

Carbon has a large specific area and excellent chemical stability, so research on its use as a catalyst support is actively conducted. When using carbon as a support, the pretreatment process is essential. Through pretreatment of carbon, the growth of metal nanoparticles can be controlled and the bonding strength between the support and metal particles can be improved. In this study, carbon was pretreated for surface modification and 5 wt% Pd/C catalysts were synthesized using it as a support. Catalytic activity was evaluated through phenol hydrogenation. To compare with nitric acid, which is commonly used in carbon pretreatment, carbon pretreatment was performed using organic acid. Pd/C treated with gluconic acid showed the highest activity, with 94.93% phenol conversion and 92.76% cyclohexanone selectivity. Therefore, it is expected that pretreatment of the carbon support using organic acid will not only overcome the disadvantages of inorganic acid treatment but also improve catalyst performance.

키워드

과제정보

본 연구는 한국생산기술연구원 기관주요사업(EH-24-0008)의 지원을 받아 수행된 연구결과입니다.

참고문헌

  1. Yin, D., Xin, Q., Yu, S., Jiang, L., Li, L., Xie, C., Wu, Q., Yu, H., Liu, Y., Liu, Y., and Liu, S., "Selective Hydrogenation of Phenol to Cyclohexanone over a Highly Stable Core-Shell Catalyst with Pd-Lewis Acid Sites," The Journal of Physical Chemistry C, 125(49), 27241-27251 (2021). 
  2. Chen, H. and Sun, J., "Selective Hydrogenation of Phenol for Cyclohexanone: A Review," Journal of Industrial and Engineering Chemistry, 94, 78-91 (2021). 
  3. Zhang, H., Han, A., Okumura, K., Zhong, L., Li, S., Jaenicke, S., and Chuah, G.-K., "Selective Hydrogenation of Phenol to Cyclohexanone by SiO2-Supported Rhodium Nanoparticles under Mild Conditions," Journal of Catalysis, 364, 354-365 (2018). 
  4. Abutaleb, A., Lolla, D., Aljuhani, A., Shin, H. U., Ali, M. A., Yousef Hassan, A. A., Maafa, I. M. H., and Chase, G. G., "Liquid Phase Selective Hydrogenation of Phenol to Cyclohexanone over Electrospun Pd/PVDF-HFP Catalyst," Fibers, 7(4), 28 (2019). 
  5. Zhou, H., Han, B., Liu, T., Zhong, X., Zhuang, G., and Wang, J., "Selective Phenol Hydrogenation to Cyclohexanone over Alkali-Metal-Promoted Pd/TiO2 in Aqueous Media," Green Chemistry, 19(15), 3585-3594 (2017). 
  6. Liu, S., Han, J., Wu, Q., Bian, B., Li, L., Yu, S., Song, J., Zhang, C., and Ragauskas, A. J., "Hydrogenation of Phenol to Cyclohexanone over Bifunctional Pd/C-HeteropolyAcid Catalyst in the Liquid Phase," Catalysis Letters, 149, 2383-2389 (2019). 
  7. Zhu, J.-F., Tao, G.-H., Liu, H.-Y., He, L., Sun, Q.-H., and Liu, H.-C., "Aqueous-Phase Selective Hydrogenation of Phenol to Cyclohexanone over Soluble Pd Nanoparticles," Green Chemistry, 16(5), 2664-2669 (2014). 
  8. Xu, G., Guo, J., Zhang, Y., Fu, Y., Chen, J., Ma, L., and Guo, Q., "Selective Hydrogenation of Phenol to Cyclohexanone over Pd-HAP Catalyst in Aqueous Media," ChemCatChem, 7(16), 2485-2492 (2015). 
  9. Sheng, X., Wang, C., and Wang, W., "Highly Selective Hydrogenation of Phenols to Cyclohexanone Derivatives Using a Palladium@ N-Doped Carbon/SiO2 Catalyst," Organic Process Research & Development, 25(11), 2425-2431 (2021). 
  10. Vono, L. L., Broicher, C., Philippot, K., and Rossi, L. M., "Tuning the Selectivity of Phenol Hydrogenation Using Pd, Rh and Ru Nanoparticles Supported on Ceria-and Titania-Modified Silicas," Catalysis Today, 381, 126-132 (2021). 
  11. Liu, Y., Qi, Z., Zhao, M.,Jiang, H., Liu,Y., and Chen, R., "Kinetics of Liquid-Phase Phenol Hydrogenation Enhanced by Membrane Dispersion," Chemical Engineering Science, 249, 117346 (2022). 
  12. Wang, Z., Ye, B., Zhou, R., Zhong, Z., Chen, P., and Hou, Z., "Selective Hydrogenation of Phenol to Cyclohexanone over Small amount of Ru-Promoted Pd/ZrHP Catalysts," Applied Catalysis A: General, 657, 119144 (2023). 
  13. Wang, S., Wang, J., Li, X., Yang, M., and Wu, Y., "Superhydrophobic Ru Catalyst for Highly Efficient Hydrogenation of Phenol under Mild Aqueous Conditions," Catalysts, 12(9), 995 (2022). 
  14. Shin, K.-S., Cha, M.-S., Kang, K.-K., and Lee, C.-S., "Inhibition of Side Reactions Forming Dimers of Diols in the Selective Hydrogenation of Methacryl Aldehyde," Clean Technol., 29(2), 79-86 (2023). 
  15. Oh, S. K., Oh, S., Han, G. B., Jeong, B., and Jeon, J.-K., "Hydrogenation of Polycyclic Aromatic Hydrocarbons Over Pt/Kieselguhr Catalysts in a Trickle Bed Reactor," Clean Technol., 28(4), 331-338 (2022). 
  16. Kim, Y. E., Lee, K.-Y., and Lee, M. S., "Morphology-Dependent Wrinkled Silica-Supported Pd Catalysts for Hydrogenation of Furfural under Mild Conditions," Catalysis Today, 426, 114392 (2024). 
  17. Kim, Y. E., Byun, M. Y., Lee, K.-Y., and Lee, M. S., "Effects of Chlorinated Pd Precursors and Preparation Methods on Properties and Activity of Pd/TiO2 Catalysts," RSC Advances, 10(68), 41462-41470 (2020). 
  18. Kim, G., Kim, Y. E., Jae, J., and Lee, M. S., "Effect of Physicochemical Properties of Carbons on the Performance of Bead-type Pd/C Catalysts for Furfural Hydrogenation," Molecular Catalysis, 558, 114025 (2024). 
  19. Byun, M. Y., Kim, J. S., Baek, J. H., Park, D.-W., and Lee, M. S., "Liquid-Phase Hydrogenation of Maleic Acid over Pd/Al2O3 Catalysts Prepared via Deposition-Precipitation Method," Energies, 12(2), 284 (2019). 
  20. Wang, S. and Lu, G. M., "Effects of Acidic Treatments on the Pore and Surface Properties of Ni Catalyst Supported on Activated Carbon," Carbon, 36(3), 283-292 (1998). 
  21. Gu, Y., Li, Y., Zhang, J., Zhang, H., Wu, C., Lin, J., Zhou, J., Fan, Y., Murugadoss, V., and Guo, Z., "Effects of Pretreated Carbon Supports in Pd/C Catalysts on Rosin Disproportionation Catalytic Performance," Chemical Engineering Science, 216, 115588 (2020). 
  22. Song, K. H., Jeong, S. K., Jeong, B. H., Lee, K.-Y., and Kim, H. J., "Acid/Base-Treated Activated Carbon Catalysts for the Low-Temperature Endothermic Cracking of n-Dodecane with Applications in Hypersonic Vehicle Heat Management Systems," Catalysts, 10(10), 1149 (2020). 
  23. Rashid, U. S. and Bezbaruah, A. N., "Citric Acid Modified Granular Activated Carbon for Enhanced Defluoridation," Chemosphere, 252, 126639 (2020). 
  24. Kim, J. S., Hong, S.-S., Kim, J.-H., and Lee, M. S., "Effect of Preparation Method for Pd/C Catalysts on Pd Characterization and their Catalytic Activity," Appl. Chem. Eng., 26(5), 575-580 (2015). 
  25. Manrique, R., Jimenez, R., Rodriguez-Pereira, J., Baldovino-Medrano, V. G., and Karelovic, A., "Insights into the Role of Zn and Ga in the Hydrogenation of CO2 to Methanol over Pd," International Journal of Hydrogen Energy, 44(31), 16526-16536 (2019). 
  26. Doan, H. V., Amer Hamzah, H., Karikkethu Prabhakaran, P., Petrillo, C., and Ting, V. P., "Hierarchical Metal-Organic Frameworks with Macroporosity: Synthesis, Achievements, and Challenges," Nano-Micro Letters, 11, 1-33 (2019). 
  27. Lowell, S., Shields, J. E., Thomas, M. A., and Thommes, M., Characterization of porous solids and powders: surface area, pore size and density, Springer Science & Business Media, 2012. 
  28. Obuya, E. A., Harrigan, W., Andala, D. M., Lippens, J., Keane, T. C., and Jones Jr, W. E., "Photodeposited Pd Nanoparticle Catalysts Supported on Photoactivated TiO2 Nanofibers," Journal of Molecular Catalysis A: Chemical, 340(1-2), 89-98 (2011). 
  29. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K. S., "Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report)," Pure and Applied Chemistry, 87(9-10), 1051-1069 (2015). 
  30. Aburub, A. and Wurster, D. E., "Phenobarbital Interactions with Derivatized Activated Carbon Surfaces," Journal of Colloid and Interface Science, 296(1), 79-85 (2006). 
  31. Kim, J. S., Baek, J. H., Kim, M. H., Hong, S. S., and Lee, M. S., "Effect of Carbon Pre-Treatment on Pd Dispersion in Synthesis of Pd/C Catalyst," in Materials Science Forum, Ed., pp. 149-152, Trans Tech Publ (2015). 
  32. Cao, X., Zhao, J., Long, F., Zhang, X., Xu, J., and Jiang, J., "Al-modified Pd@ mSiO2 Core-Shell Catalysts for the Selective Hydrodeoxygenation of Fatty Acid Esters: Influence of Catalyst Structure and Al Atoms Incorporation," Applied Catalysis B: Environmental, 305, 121068 (2022). 
  33. Abdulhameed, A., Mohtar, M. N., Hamidon, M. N., Mansor, I., and Halin, I. A., "Characterization and Selective Deposition of Carbon Nanotubes from Carbon Nanoparticles Mixture Using Mild Acid Treatment and Electrokinetic Manipulation," Materials Research Express, 8(5), 055603 (2021). 
  34. Qiu, C., Jiang, L., Gao, Y., and Sheng, L., "Effects of Oxygen-Containing Functional Groups on Carbon Materials in Supercapacitors: A Review," Materials & Design, 111952 (2023). 
  35. Saad, M., Szymaszek, A., Bialas, A., Samojeden, B., and Motak, M., "The Enhanced Performance of n-Modified Activated Carbon Promoted with Ce in Selective Catalytic Reduction of NOx with NH3," Catalysts, 10(12), 1423 (2020). 
  36. Tammaro, L., Vittoria, V., and Bugatti, V., "Dispersion of Modified Layered Double Hydroxides in Poly (Ethylene Terephthalate) by High Energy Ball Milling for Food Packaging Applications," European Polymer Journal, 52, 172-180 (2014). 
  37. Lanfredi, S., Nobre, M. A., Poon, P. S., and Matos, J., "Hybrid Material Based on an Amorphous-Carbon Matrix and ZnO/Zn for the Solar Photocatalytic Degradation of Basic Blue 41," Molecules, 25(1), 96 (2019). 
  38. Byun, M. Y., Park, D.-W., and Lee, M. S., "Effect of Oxide Supports on the Activity of Pd Based Catalysts for Furfural Hydrogenation," Catalysts, 10(8), 837 (2020). 
  39. Song, H. J., Kim, Y. E., Jae, J., and Lee, M. S., "Effect of HCl Treatment on Acidity of Pd/TiO2 for Furfural Hydrogenation," Catalysts, 13(12), 1481 (2023). 
  40. Yang, H., Liu, J., Pang, B., and Chi, J., "Effect of Different Pretreatment Methods on Pore Structure of Activated Carbon," in Journal of Physics: Conference Series, Ed., pp. 012067, IOP Publishing (2021). 
  41. Cao, P., Yan, B., Chu, Y., Wang, S., Yu, H., Li, T., Xiong, C., and Yin, H., "Synthesis of Highly Dispersed Palladium Nanoparticles Supported on Silica for Catalytic Combustion of Methane," Industrial & Engineering Chemistry Research, 60(20), 7545-7557 (2021). 
  42. Shi, M., Zhang, C., Ma, M., Zhang, C., and Huang, L., "Highly Dispersed Pd Nanoparticles on a SiO2 Support for Dehydrogenation of Dodecahydro-N-ethylcarbazole," New Journal of Chemistry, 48, 4391-4399 (2024). 
  43. Wang, C., Li, Y., Zhang, C., Chen, X., Liu, C., Weng, W., Shan, W., and He, H., "A Simple Strategy to Improve Pd Dispersion and Enhance Pd/TiO2 Catalytic Activity for Formaldehyde Oxidation: The Roles of Surface Defects," Applied Catalysis B: Environmental, 282, 119540 (2021). 
  44. Howeizi, J., Taghvaei-Ganjali, S., Malekzadeh, M., Motiee, F., and Sahebdelfar, S., "Effect of the Distribution and Dispersion of Palladium Nanoparticles on the Reducibility and Performance of Pd/Al2O3 Catalyst in Liquid-Phase Hydrogenation of Olefins," Reaction Kinetics, Mechanisms and Catalysis, 130, 777-795 (2020). 
  45. Velin, P., Floren, C.-R., Skoglundh, M., Raj, A., Thompsett, D., Smedler, G., and Carlsson, P.-A., "Palladium Dispersion Effects on Wet Methane Oxidation Kinetics," Catalysis Science & Technology, 10(16), 5460-5469 (2020). 
  46. Raut, A., Nandanwar, S., Suryawanshi, Y., Chakraborty, M., Jauhari, S., Mukhopadhyay, S., Shenoy, K., and Bajaj, H., "Liquid Phase Selective Hydrogenation of Phenol to Cyclohexanone over Ru/Al2O3 Nanocatalyst under Mild Conditions," Kinetics and Catalysis, 57, 39-46 (2016). 
  47. Kasabe, M. M., Kotkar, V. R., Dongare, M. K., and Umbarkar, S. B., "Phenol Hydrogenation to Cyclohexanol Catalysed by Palladium Supported on CuO/CeO2," Chemistry-An Asian Journal, 18(11), e202300119 (2023).