• 제목/요약/키워드: Metal substrate

검색결과 1,512건 처리시간 0.03초

MATERIAL AND ELECTICAL CHARACTERISTICS OF COPPER FILMS DEPOSITED BY MATAL-ORGANIC CHEMICAL TECHNIQUE

  • Cho, Nam-Ihn;Park, Dong-Il;Nam, H. Gin
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.803-808
    • /
    • 1996
  • Material and electrical characteristies of copper thin films prepared by metal organic chemical vapor deposition (MOCVD) have been investigated for interconnection applications in ultra large scale integration circuits (ULSI). The copper films have been deposited a TiN substrates using a metal organic precursor, hexafluoro acetylacetonate trimethyvinylsilane copper, VTMS(hfac)Cu (I). Deposition rate, grain size, surface morphology, and electrical resistvity of the copper films have been measuredfrom samples prepared at various experimental conditions, which include substrate temperature, chamber pressure, and carrier gas flow rate. Results of the experiment showed that the electrical property of the copper films is closely related to the crystallinity of the films. Lowest electrical resistivity, $2.4{\mu}{\Omega}.cm$ was obtained at the substrate temperature of $180^{\circ}C$, but the resistivity slightly increased with increasing substrate temperature due to the carbon content along the copper grain boundaries.

  • PDF

INVAR 마스크 응용 반도체 기판 소재의 고체 UV 레이저 프로젝션 어블레이션 (DPSS UV Laser Projection Ablation of IC Substrates using an INVAR Mask)

  • 손현기;최한섭;박종식
    • 한국레이저가공학회지
    • /
    • 제15권4호
    • /
    • pp.16-19
    • /
    • 2012
  • Due to the fact that the dimensions of circuit lines of IC substrates have been forecast to reduce rapidly, engraving the circuit line patterns with laser has emerged as a promising alternative. To engrave circuit line patterns in an IC substrate, we used a projection ablation technique in which a metal (INVAR) mask and a DPSS UV laser instead of an excimer laser are used. Results showed that the circuit line patterns engraved in the IC substrate have a width of about 15um and a depth of $13{\mu}m$. This indicates that the projection ablation with a metal mask and a DPSS UV laser could feasibly replace the semi-additive process (SAP).

  • PDF

Optimal Metal Dose of Alternative Cathode Catalyst Considering Organic Substances in Single Chamber Microbial Fuel Cells

  • Nam, Joo-Youn;Moon, Chungman;Jeong, Emma;Lee, Won-Tae;Shin, Hang-Sik;Kim, Hyun-Woo
    • Environmental Engineering Research
    • /
    • 제18권3호
    • /
    • pp.145-150
    • /
    • 2013
  • Optimal preparation guidelines of a cathode catalyst layer by non-precious metal catalysts were evaluated based on electrochemical performance in single-chamber microbial fuel cells (MFCs). Experiments for catalyst loading rate revealed that iron(II) phthalocyanine (FePc) can be a promising alternative, comparable to platinum (Pt) and cobalt tetramethoxyphenylporphyrin (CoTMPP), including effects of substrate concentration. Results showed that using an optimal FePc loading of $1mg/cm^2$ was equivalent to a Pt loading of $0.35mg/cm^2$ on the basis of maximum power density. Given higher loading rates or substrate concentrations, FePc proved to be a better alternative for Pt than CoTMPP. Under the optimal loading rate, it was further revealed that 40 wt% of FePc to carbon support allowed for the best power generation. These results suggest that proper control of the non-precious metal catalyst layer and substrate concentration are highly interrelated, and reveal how those combinations promote the economic power generation of single-chamber MFCs.

Molecular Modeling and Site Directed Mutagenesis of the O-Methyltransferase, SOMT-9 Reveal Amino Acids Important for Its Reaction and Regioselectivity

  • Park, So-Hyun;Kim, Bong-Gyu;Lee, Sun-Hee;Lim, Yoong-Ho;Cheong, You-Hoon;Ahn, Joong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2248-2252
    • /
    • 2007
  • SOMT-9 is an O-methyltransferase that utilizes quercetin to produce 3'-methoxy quercetin. In order to determine which amino acids of SOMT-9 are important for this reaction and its regioselectivity, molecular docking experiments followed by site directed mutagenesis were performed. Molecular modeling and molecular docking experiments identified several amino acid residues involved in metal binding, AdoMet binding, and substrate binding. Site-directed mutagenesis showed that Asp188 is critical for metal binding and that Lys165 assists other metal binding residues in maintaining quercetin in the proper position during the reaction. In addition, Tyr207 was shown to play an important role in the determination of the regioselectivity and Met60 was shown to be involved in formation of the hydrophobic pocket necessary for substrate binding. The molecular modeling and docking experiments discussed in this study could be applicable to future research including prediction of substrate binding and regioselectivity of an enzyme.

Compositional Study of Surface, Film, and Interface of Photoresist-Free Patternable SnO2 Thin Film on Si Substrate Prepared by Photochemical Metal-Organic Deposition

  • Choi, Yong-June;Kang, Kyung-Mun;Park, Hyung-Ho
    • 마이크로전자및패키징학회지
    • /
    • 제21권1호
    • /
    • pp.13-17
    • /
    • 2014
  • The direct-patternable $SnO_2$ thin film was successfully fabricated by photochemical metal-organic deposition. The composition and chemical bonding state of $SnO_2$ thin film were analyzed by using X-ray photoelectron spectroscopy (XPS) from the surface to the interface with Si substrate. XPS depth profiling analysis allowed the determination of the atomic composition in $SnO_2$ film as a function of depth through the evolution of four elements of C 1s, Si 2p, Sn 3d, and O 1s core level peaks. At the top surface, nearly stoichiometric $SnO_2$ composition (O/Sn ratio is 1.92.) was observed due to surface oxidation but deficiency of oxygen was increased to the interface of patterned $SnO_2/Si$ substrate where the O/Sn ratio was about 1.73~1.75 at the films. This O deficient state of the film may act as an n-type semiconductor and allow $SnO_2$ to be applied as a transparent electrode in optoelectronic applications.

Oxygen Deficiency, Hydrogen Doping, and Stress Effects on Metal-Insulator Transition in Single-Crystalline Vanadium Dioxide Nanobeams

  • 홍웅기;장성진;박종배;배태성
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.424.1-424.1
    • /
    • 2014
  • Vanadium dioxide (VO2) is a strongly correlated oxide exhibiting a first-order metal-insulator transition (MIT) that is accompanied by a structural phase transition from a low temperature monoclinic phase to a high-temperature rutile phase. VO2 has attracted significant attention because of a variety of possible applications based on its ultrafast MIT. Interestingly, the transition nature of VO2 is significantly affected by stress due to doping and/or interaction with a substrate and/or surface tension as well as defects. Accordingly, there have been considerable efforts to understand the influences of such factors on the phase transition and the fundamental mechanisms behind the MIT behavior. Here, we present the influences of oxygen deficiency, hydrogen doping, and substrate-induced stress on MIT phenomena in single-crystalline VO2 nanobeams. Specifically, the work function and the electrical resistance of the VO2 nanobeams change with the compositional variation due to the oxygen-deficiency-related defects. In addition, the VO2 nanobeams during exposure to hydrogen gas exhibit the reduction of transition temperature and the complex phase inhomogenieties arising from both substrate-induced stress and the formation of the hydrogen doping-induced metallic rutile phase.

  • PDF

Zn 타겟을 이용한 ZnO 박막트랜지스터의 스퍼터링 성장 (Sputtering Growth of ZnO Thin-Film Transistor Using Zn Target)

  • 우맹;조중열
    • 반도체디스플레이기술학회지
    • /
    • 제13권3호
    • /
    • pp.35-38
    • /
    • 2014
  • Flat panel displays fabricated on glass substrate use amorphous Si for data processing circuit. Recent progress in display technology requires a new material to replace the amorphous Si, and ZnO is a good candidate. ZnO is a wide bandgap (3.3 eV) semiconductor with high mobility and good optical transparency. ZnO is usually grown by sputtering using ZnO ceramic target. However, ceramic target is more expensive than metal target, and making large area target is very difficult. In this work we studied characteristics of ZnO thin-film transistor grown by rf sputtering using Zn metal target and $CO_2$. ZnO film was grown at $450^{\circ}C$ substrate temperature, with -70 V substrate bias voltage applied. By using these methods, our ZnO TFT showed $5.2cm^2/Vsec$ mobility, $3{\times}10^6$ on-off ratio, and -7 V threshold voltage.

Catalytic growth of single wall carbon nanotubes by laser vaporization and its purification and The carbon nanotube growth on the Si substrate by CVD method

  • Lee, Sung won;Jung in Sohn;Lee, Seonghoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.213-213
    • /
    • 2000
  • Direct laser vaporization of transition-metal(Co, Ni)/graphite composite pellet produced single wall carbon naotubes(SWNT) in the condensing vapor in a heated flow cylinder-type tube furnace, Transition metal/graphite composite pellet target was made by mixing graphite, Co, and Ni in 98:1:1 atomic weight ratios, pressing the mixed powder, and curing it. The target was placed in a tube furnace maintained at 1200$^{\circ}C$ and Ar inert collision gas continuously flowed into the tube. The 2nd harmonic, 532nm wavelength light from Nd-YAG laser was used to vaporize the tube. The carbon nanotubes produced by the laser vaporization were accumulated on quartz tube wall. The raw carbon nanotube materials were purified with surfactants(Triton X-100) in a ultrasonicator. These carbon nanotubes were analyzed using SEM, XRD, and Raman spectroscopic method. The carbon nanotube growth on the Ni-patterned Si substrate was investigated by the CVD process. Transition-metal, Ni and CH4 gas were used as a catalyst and a reactant gas, respectively. The structure and the phonon frequencies of the carbon nanotubes formed on the patterned Si substrate were measured by SEM and Raman spectrometer.

  • PDF

운모기판을 이용한 다결정 Si 전이막 성장 연구 (Growth of Transferable Polycrystalline Si Film on Mica Substrate)

  • 박진우;엄지혜;안병태;정영권
    • 한국재료학회지
    • /
    • 제14권5호
    • /
    • pp.343-347
    • /
    • 2004
  • We investigated the growth feasibility of polycrystalline Si film on mica substrate for the transfer of the layer to a plastic substrate. The annealing temperature was limited up to $600^{\circ}C$ because of crack development in the mica substrate. Amorphous Si film was deposited on mica substrate by PECVD and was crystallized by furnace annealing. During the annealing, bubbles were formed at the Si/mica interface. The bubble formation was avoided by the Ar-plasma treatment before amorphous Si deposition. A uniform and clean polycrystalline Si film was obtained by coating $NiCl_2$ on the amorphous Si film and annealing at $500^{\circ}C$ for 10 h. The conventional Si lithography was possible on the mica substrate and the devices fabricated on the substrate could be transferred to a plastic substrate.

이중 기판 결함 접지 구조를 이용한 비대칭 월킨슨 전력 분배기 (An Unequal Wilkinson Power Divider Using Defected Ground Structure in Double Layered Substrate)

  • 임종식;구재진;오성민;정용채;안달
    • 한국전자파학회논문지
    • /
    • 제18권11호
    • /
    • pp.1291-1298
    • /
    • 2007
  • 종래의 DGS를 이용한 초고주파 회로의 메탈 패키징(metal packaging)시 존재했던 DGS의 접지면 접촉 문제를 해결하고자, 본 논문에서는 이중 기판 결함 접지 구조 구조를 제안하고, 이를 1:4 비대칭 전력 분배기에 적용한 응용예를 제시한다. 이중 기판에 구현된 사각형 DGS는 종래와 같이 마이크로스트립 선로의 특성 임피던스를 표준형 선로보다 크게 증가시킨다. 이중 기판 DGS 구조를 형성하기 위하여 제2유전체 기판이 DGS가 구현된 기판면의 바닥 접지면에 접합된다. 따라서 제2유전체 기판이 메탈 패키지 바닥면에 장착되므로, DGS가 직접 패키지 접촉되는 것을 막을 수 있다. 초고주파 회로 응용예를 보이기 위해, 이중 기판 DGS를 이용하여 패키지 접지 문제를 해결한 1:4 비대칭 전력 분배기의 설계 및 측정 결과가 제시되는데, 시뮬레이션과 측정 결과에 있어서 잘 일치하는 특성을 보인다.