• Title/Summary/Keyword: Metal removal

Search Result 1,218, Processing Time 0.027 seconds

Cadmium Accumulation and Tolerance of Iris pseudacorus and Acorus calamus as Aquatic Plants Native to Korea (자생 수생식물 노랑꽃창포와 창포의 카드뮴 축적 및 내성)

  • Lee, Sung-Chun;Kim, Wan-Soon
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.413-419
    • /
    • 2011
  • This study was conducted to find out the cadmium (Cd) accumulation and tolerance of Iris pseudacorus and Acorus calamus as aquatic plants native to Korea for Cd removal in water. In the range of Cd concentration from $10{\mu}M$ to $130{\mu}M$, the Cd lethal dose 50 ($LD_{50}$) was $78.5{\mu}M$ in I. pseudacorus and $47.6{\mu}M$ in A. calamus. In I. pseudacorus, superoxide dismutase and peroxidase as antioxidants were relatively effective against oxidative stress caused by Cd, while catalase, superoxide dismutase, and polyphenolics were effective in A. calamus. The polyphenolics known as typical antioxidants were not detected in I. pseudacorus. In both species, the Cd accumulation in plants increased with the higher Cd concentration and the longer processing period. Also, the absorbed Cd was accumulated mainly in the roots. The amount of Cd accumulated in the shoot part was maximally $548.1mg{\cdot}kg^{-1}$ (82.1% to Cd accumulated in the root part) in I. pseudacorus and $121.4mg{\cdot}kg^{-1}$ (13.7%) in A. calamus, which implied that both species all were enough evaluated as Cd hyper-accumulators based on 0.01% or more Cd accumulation in the shoot. Especially I. pseudacorus showed outstanding ability to move well Cd into the shoots from the roots and high tolerance to Cd stress.

Design of Pretreatment Process of Lead Frame Etching Wastes Using Reduction-Oxidation Method (환원-산화법을 이용한 리드프레임 에칭폐액의 정제과정 설계)

  • Lee, Seung Bum;Jeon, Gil Song;Jung, Rae Yoon;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • When copper alloy is used in etching process for the production of lead frame, the high concentration of heavy metals, such as iron, nickel and zinc may be included in the etching waste. Those etching waste is classified as a specified one. Therefore a customized design was designed for the purification process of the lead frame etching waste liquid containing high concentrations of heavy metals for the production of an electroplating copper(II) oxide. Since the lead frame etching waste solution contains highly concentrated heavy metal species, an ion exchange method is difficult to remove all heavy metals. In this study, a copper(I) chloride was manufactured by using water solubility difference related to the reduction-oxidation method followed by the reunion of copper(II) chloride using sodium sulfate as an oxidant. The hydrazine was chosen as a reducing agent. The optimum added amount was 1.4 mol per 1.0 mol of copper. In the case of removal of heavy metals by using the combination of reduction-oxidation and ion exchange resin methods, 4.3 ppm of $Fe^{3+}$, 2.4 ppm of $Ni^{2+}$ and 0.78 ppm of $Zn^{2+}$ can be reused as raw materials for electroplating copper(II) oxide when repeated three times.

Experimental Study for Removing Lacquer Layer on Iron Surface by Nd:YAG Laser System (Nd:YAG 레이저를 이용한 철제 표면 옻칠 제거 실험 연구)

  • Park, Chang Su;Cho, Nam Chul;Hwang, Hyun Sung
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.377-384
    • /
    • 2016
  • There are physical and chemical method for removement of a lacquered layer existing on the surface when gilding an iron Buddha, these caused environmental pollution by surface degradation and is very noxious for conservation scientist's health. Thus, on this study, we conducted a lacquered layer removement experiments using Nd:YAG Laser which is contactless and eco-friendly. Specimens were made by polishing $5{\times}5$ size of iron(99.9%) specimens surfaces evenly and by differing of number of coating of unrefined lacquer, so there were thickness differences of $10{\mu}m$, $20{\mu}m$, and $30{\mu}m$. The laser machine used in this study was Nd:YAG Laser, and we used two wavelength modes; 1064 nm(160~180 mJ) for infrared light region and 532 nm(50~350 mJ) for ultraviolet light region. The experiment done by investigating the transition of specimens' surfaces with laser wavelength, energy, and numbers of investigation. The remain amount of lacquered layer surfaces before/after laser irradiation was investigated by stereoscopic microscope, observation by SEM, Non-contact Surface Roughness Measurement Device, and FT-IR etc. As a result of each analysis, we could verify the thickness of $10{\mu}m$, $20{\mu}m$ of lacquered layer removed without surface degradation when using 1064 nm wavelength with $1.0J/cm^2$ density. We could find out that Nd:YAG Laser is effective for removing remained lacquered layers when gilding an iron Buddha. In the future, when not only the metal has made various studies also wood lacquered furniture or the like, it seems to be utilized to remove the lacquer without surface damage.

The Effects of Humidity Control Capability and Removal Toxic Gases of Activated Carbon to the Display Environment of Cultural Properties (문화재 전시 공간에 대한 활성탄의 습도 제어 및 유해가스 제거 효과 연구)

  • Kang, Sae Rom;Choi, Yu Ri;Kang, Dai Ill
    • Journal of Conservation Science
    • /
    • v.30 no.2
    • /
    • pp.235-241
    • /
    • 2014
  • In this study, we are trying to verify humidity control capability of the exhibition environment of cultural property by measuring adsorption and desorption performance, the control ability of harmful substances by the adsorption experiments of harmful gases. In the experiment of adsorption and desorption performance, in the low humidity area, Artsorb desorbed overwhelmingly more than activated carbon whereas activated carbon absorbed more. Adsorption speed was faster slightly in Artsorb absorption speed was similar in both. In the middle humidity area, absorption by artsorb was slightly more and desorption was similar in both so characteristic of Artsorb didn't appear. Also, Adsorption speed was faster in activated carbon but in the process of desorption, the speed of Artsorb was faster. In adsorption experiment of harmful substances, the concentration in the environment with activated carbon was lower than one with Artsorb, but the difference appeared small. And as a result of observation of the difference in concentration due to adsorption of harmful gas by the change in the metal specimen, the most change was shown in lead specimen and the color difference between the lead specimens of the activated carbon and Artsorb appeared greatly.

Lead Biosorption by Alginate Beads Immobilizing Aspergillus niger (Aspergillus niger를 고정화한 Alginate Bead에 의한 납 흡착)

  • Bang, Byung-Ho
    • Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.185-190
    • /
    • 2001
  • Alginate, a well-known biopolymer, is universally applied for immobilization of microbial cells. Biosorption characteristics of lead by waste biomass of immobilized A. niger beads, used in fermentation industries to produce citric acid, were studied. The immobilized A. niger beads, prepared via capillary extrusion method using calcium chloride, were applied in the removal of lead. Pb uptake was the highest in A. niger beads cells grown for 3 days with medium producing citric acid (12% sucrose, 0.5% $NH_4NO_3$, 0.1% $KH_2PO_4$, and 0.025% $MgSO_4$). Lead uptake by the immobilized A. niger beads and free A. niger mycellia beads increased sharply with time. However, while uptake by the immobilized A. niger beads continued to increase slowly, that by free A. niger mycellia beads stopped after 30 min. The optimum pH and temperature of lead uptake were found to be 6 and $35^{\circ}C$, respectively. The maximum uptake of lead was achieved with $50{\sim}100$ beads and 50 ml lead solution in a 250-ml Erlenmeyer flask, while, at over 100 beads, uptake of the lead decreased. The order of biosorption capacity for heavy metals was Pb>Cu>Cd. Pb uptake capacity of the immobilized A. niger beads treated with 0.1 M $CaCI_2$, 0.1 M NaOH, and 0.1 M KOH decreased compared to the untreated beads. On testing the desorption of Pb from the immobilized A. niger beads, re-uptake of Pb was found possible after desorption of the binding metal with 0.1 M HCI.

  • PDF

Studies on the Production of Artificial Zeolite from Coal Fly Ash and Its Utilization in Agro-Environment

  • Lee, Deog-Bae;Henmi, Teruo;Lee, Kyung-Bo;Kim, Jae-Duk
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.401-418
    • /
    • 2000
  • 1. Production of the artificial zeolite from coal ash Coal fly ash is mainly composed of several oxides including $SiO_2$ and $Al_2O_3$ derived from inorganic compounds remained after burning. As minor components, $Fe_2O_3$ and oxides of Mg, Ca, P, Ti (trace) are also contained in the ash. These components are presented as glass form resulting from fusion in the process of the combustion of coal. In other word, coal ash may refer to a kind of aluminosilicate glass that is known to easily change to zeolite-like materials by hydrothermal reaction. Lots of hot seawater is disposing near thermal power plants after cooling turbine generator periodically. Using seawater in the hydrothermal reaction caused to produce low price artificial zeolite by reduction of sodium hydroxide consumption, heating energy and water cost. As coal ash were reacted hydrothermally, peaks of quartz and mullite in the ash were weakened and disappeared, and new Na-Pl peaks were appeared strengthily. Si-O-Si bonding of the bituminous coal ash was changed to Si-O-Al (and $Fe^{3+}$) bonding by the reaction. Therefore the produced Na-Pl type zeolite had high CEC of 276.7 $cmol^+{\cdot}kg^{-1}$ and well developed molecular sieve structure with low concentration of heavy metals. 2. Utilization of the artificial zeolite in agro-environment The artificial zeolite(1g) could remove 123.5 mg of zinc, 164.7 mg copper, 184.4 mg cadmium and 350.6 mg lead in the synthetic wastewater. The removability is higher 2.8 times in zinc, 3.3 times in copper, 4.7 times in cadmium and 4.8 times in lead than natural zeolite and charcoal powder. When the heavy metals were treated at the ratio of 150 $kg{\cdot}ha^{-1}$ to the rice plant, various growth inhibition were observed; brownish discoloration and death of leaf sheath, growth inhibition in culm length, number of panicles and grains, grain ripening and rice yield. But these growth inhibition was greatly alleviated by the application of artificial zeolite, therefore, rice yield increased $1.1{\sim}3.2$ times according to the metal kind. In addition, the concentration of heavy metals in the brown rice also lowered by $27{\sim}75%$. Artificial Granular Zeolites (AGZ) was developed for the purification of wastewater. Canon exchange capacity was 126.8 $cmol^+{\cdot}kg^{-1}$. AGZ had Na-Pl peaks mainly with some minor $C_3S$ peaks in X-ray diffractogram. In addition, AGZs had various pore structure that may be adhere the suspended solid and offer microbiological niche to decompose organic pollutants. AGZ could remove ammonium, orthophosphate and heavy metals simultaneously. Mixing ratio of artificial zeolite in AGZs was related positively with removal efficiency of $NH_4\;^+$ and negatively with that of $PO_4\;^{3-}$. Root growth of rice seedling was inhibited severely in the mine wastewater because of strong acidity and high concentration of heavy metals. As AGZ(1 kg) stayed in the wastewater(100L) for 4days, water quality turned into safely for agricultural usage and rice seedlings grew normally.

  • PDF

Characterization of Phytase from Bacillus coagulans IDCC 1201 (Bacillus coagulans IDCC 1201이 생산하는 Phytase의 특성)

  • Lee Seung-Hun;Kwon Hyuk-Sang;Koo Kyo-Tan;Kang Byung-Hwa;Kim Tae-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.28-34
    • /
    • 2006
  • A native extracellular acid phosphatase, phytase (EC 3.1.3.8), from Bacillus coagulans IDCC 1201 (commercially known as Lactobacillus sporogenes) used as probiotics, was characterized. Though some strains of B. coagulans have been evaluated with regard to several health-promoting effects, it has not been reported to produce phytase. Partially purified phytase front the strain IDCC 1201 had a pH optimum of 4.0 and a temperature optimum of $50^{\circ}C$, respectively. The requirement for divalent cations was studied and cobalt ion remarkably increased the enzyme activity. The removal of metal ions from the enzyme by EDTA decreased activity below 50%. The enzyme activity depleted restored when the assay was performed in the presence of $Co^{2+}$. Also, $Co^{2+}$ is the most active stimulator and has unique activation effect at high temperature. The phytase was specific for sodium phytate and p-nitrophenylphosphate, which is different from other known Bacilli phytases. The putative amino acid sequences of the phytase from B. coagulans IDCC 1201 were very similar to that of the phytase from B. subtilis strain 168. Based on these data, we concluded that the phytase from B. coagulans IDCC 1201 is a $Co^{2+}$-dependent acid phosphatase. Therefore, the strain B. coagulans IDCC 1201 is thought to be a valuable addititive for livestocks as well as a beneficial probiotics for human.

A Close Examination of Unstability and a Quality Improvement using Anhydrous $Na_2CO_3$ in Waste Plastic's Thermal Pyrolysis Oil (폐플라스틱 열분해 재생유의 불안정한 요인 규명과 무수탄산나트륨으로 품질 향상)

  • Seo, Young-Hwa;Ko, Kwang-Youn
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1371-1380
    • /
    • 2007
  • Study on the instability of waste plastic's thermal pyrolysis oil was carried out for the purpose of improving its quality. The reaction of pyrolysis oil with ozone changed double bonds into aldehydes and ketone, estimated that HDPE pyrolysis oil contained $\sim45$ wt% 1-alkene type olefins, and PP pyrolysis oil did $\sim73$ wt% olefins, which consisted of $\sim47$ wt% secondary and $\sim20$ wt% primary alkenes. The dark brown color and odor of pyrolysis oil were improved by eliminating double bonds, indicated that they were directly related to unsaturated hydrocarbons. Container test showed that metal can affected oil quality worse than the brown glass bottle. Antioxidant added into pyrolysis oil was consumed up to 90% within $2\sim3$ days and the wt. composition of unsaturated hydrocarbons in pyrolysis oil was not changed within 50 days, inferring that instability of pyrolysis oil due to unsaturated bonds can be stabilized by antioxidants. Adsorption test on silica gel, activated carbon and alumina to remove precipitates in oil produced a good result, but not enough to remove moisture. However, cheap anhydrous sodium carbonate showed the best removal efficiency of moisture as well as precipitates in oil. Therefore the pyrolysis oil quality improvement was accomplished by applying anhydrous $Na_2CO_3$ into the production plant.

A Study on the Distribution and Composition of Floating Debris in the Coast of Korea II. Transport of Debris in Middle Part of Southern Sea (연안어장의 부유성 폐기물 분포와 조성에 관한 연구 II. 남해 중부해역의 폐기물 수송)

  • KIM Jong-Hwa
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.3
    • /
    • pp.338-344
    • /
    • 1999
  • Floating debris was recorded from a training ship, $\sharp$1 Kwanaksan, of Pukyong National University with about 10 knots speed at July 15th and 20th of 1997. The sampled area is the middle of southern sea of Korea, divided into 44 unit segments on survey routes. Debris fabrication materials were categorized with 6 items using the following; man-made or natural wood items, paper and cardboard, nylon netting and rope, styrofoam, plastics, floating metal and glass containers. All identified items within a 100 $\pm$ 2 m wide band were recorded but ignored if beyond this boundary. The results of distribution and transport of floating debris in the area are as follows: 1. The quantities of debris during the survey were distributed from $1.6\~369.7\;items/km^2$. The most obvious trend is the widespread distribution of all debris. The highest densities of all debris were discovered in the coastal waters of Namhae and Yokji island, and of about 50 km off from the southward of Yokji and about 74 km off from the eastward of Komun island. Especially many of small styrofoams within $\phi$20 cm were observed in these segments. 2. Styrofoams and plastics were composed of $83.5\%$ among all debris, next woods items, $9.8\%$. 3. The quantities, distribution shapes and composition of debris were varied as the observed duration and the natures of each items. 4. These phenomena are concluded that firstly they depend on the river discharges included debris due to precipitation falls, secondly inflow or dumping debris are drifting to the off-shore by Kuroshio currents present at their adjacent sea, But on the basis of the observed data it is difficult that source position, quantities and inflow items of debris are identified, and also the transport processes is pursue. further more surveys are continuously being investigated, and from this it is hoped that a much wider coverage can be achieved, perhaps on all sites of the Coast of Korea and contributed to the stationary area, finding of sources, removal method of debris and resistants of marine productivity.

  • PDF

WELD REPAIR OF GAS TURBINE HOT END COMPONENTS

  • Chaturvedi, M.C.;Yu, X.H.;Richards, N.L.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.235-243
    • /
    • 2002
  • Ni-base superalloys are used extensively in industry, both in aeroengines and land based turbines. About 60% by weight of most modern gas turbine engine structural components are made of Ni-base superalloys. To satisfy practical demands, the efficiency of gas turbine engines has been steadily and systematically increased by design modifications to handle higher turbine inlet or firing temperatures. However, the increase in operating temperatures has lead to a decrease in the life of components and increase in costs of replacement. Moreover, around 80% of the large frame size industrial/utility gas turbines operating in the world today were installed in the mid-sixties to early seventies and are now 25 to 30 years old. Consequently, there are greater opportunities now to repair and refurbish the older models. Basically, there are two major factors influencing the weldability of the cast alloys: strain-age cracking and liquation cracking. Susceptibility to strain-age cracking is due to the total Ti plus AI content of the alloy; Liquation cracking is due either to the presence of low melting constituents or constitutional liquation of constituents. Though Rene 41 superalloy has 4.5wt.% total Ti and Al content and falls just below the safe limit proposed by Prager et al., controlled grain size and special heat treatments are needed to obtain crack-free welds. Varying heat treatments and filler materials were used in a laboratory study, then the actual welding of service parts was carried out to verity the possibility of crack-tree weld of components fabricated from Rene 41 superalloy. The microstructural observations indicated that there were two kinds of carbides in the FCC matrix. MC carbides were located along the grain boundaries, while M$_{23}$C$_{6}$ carbide was located both inter and intra granularly. Two kinds of filler materials, Rene 41 and Hastelloy X were used to gas tungsten arc weld a patch into the sheet metal, along with varying pre-weld heat treatments. The microstructure, hardness and tensile tests were determined. The service distressed parts were categorized into three classes: with large cracks, with medium cracks and with small or no visible cracks. No significant difference in microstructure among the specimens was observed. Specimens were cut from the corner and the straight edge of the patch repair, away from the corner. The only cracks present were found to be associated with inadequate surface preparation to remove oxidation. Guidelines for oxide removal and the welding procedures developed in the research enabled crack-free welds to be produced.d.

  • PDF