Browse > Article

Characterization of Phytase from Bacillus coagulans IDCC 1201  

Lee Seung-Hun (ILDONG Research Laboratories, ILDONG Pharmaceutical Co., Ltd.)
Kwon Hyuk-Sang (ILDONG Research Laboratories, ILDONG Pharmaceutical Co., Ltd.)
Koo Kyo-Tan (ILDONG Research Laboratories, ILDONG Pharmaceutical Co., Ltd.)
Kang Byung-Hwa (ILDONG Research Laboratories, ILDONG Pharmaceutical Co., Ltd.)
Kim Tae-Yong (ILDONG Research Laboratories, ILDONG Pharmaceutical Co., Ltd.)
Publication Information
Microbiology and Biotechnology Letters / v.34, no.1, 2006 , pp. 28-34 More about this Journal
Abstract
A native extracellular acid phosphatase, phytase (EC 3.1.3.8), from Bacillus coagulans IDCC 1201 (commercially known as Lactobacillus sporogenes) used as probiotics, was characterized. Though some strains of B. coagulans have been evaluated with regard to several health-promoting effects, it has not been reported to produce phytase. Partially purified phytase front the strain IDCC 1201 had a pH optimum of 4.0 and a temperature optimum of $50^{\circ}C$, respectively. The requirement for divalent cations was studied and cobalt ion remarkably increased the enzyme activity. The removal of metal ions from the enzyme by EDTA decreased activity below 50%. The enzyme activity depleted restored when the assay was performed in the presence of $Co^{2+}$. Also, $Co^{2+}$ is the most active stimulator and has unique activation effect at high temperature. The phytase was specific for sodium phytate and p-nitrophenylphosphate, which is different from other known Bacilli phytases. The putative amino acid sequences of the phytase from B. coagulans IDCC 1201 were very similar to that of the phytase from B. subtilis strain 168. Based on these data, we concluded that the phytase from B. coagulans IDCC 1201 is a $Co^{2+}$-dependent acid phosphatase. Therefore, the strain B. coagulans IDCC 1201 is thought to be a valuable addititive for livestocks as well as a beneficial probiotics for human.
Keywords
Acid phytase; phytic acid; $Co^{2+}$-dependent metalloenzyme; thermostability; Bacillus coagulans;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Choi, J. M., D. S. Kim, M. S. Yang, H. R. Kim, and J. H. Kim. 2001. Expression of the Aspergillus niger var. awamori phytase gene in Pichia pastoris, and comparison of biological properties. J. Microbiol. Biotechnol. 11: 1066-1070
2 Mohan, J. C., R. Arora, and M. khalilullah. 1990. Short term hypolipidemic effects of oral Lactobacillus sporogenes therapy in patients with primary dyslipidemias. Indian Heart J. 42: 361-364
3 Panchal, T. and R. J. Wodzinski. 1998. Comparison of glycosylation patterns of phytase from Aspergillus niger (A. jicuum) NRRL3135 and recombinant phytase. Prep. Biochem. Biotechnol. 28: 201-217   DOI   ScienceOn
4 Pasamontes, L., M. Haiker, M. Wyss, M. Tessier, and A. P. G. M. VanLoon. 1997. Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl. Environ. Microbiol. 63: 1696-1700
5 Choi, W. C., B. C. Oh, H. K. Kim, and E. S. Lee. 2002. Medium optimization for phytrase production by recombinant Escherichia coli using statical experimental design. J. Microbiol. Biotechnol. 12: 490-496
6 Wodzinski, R. J. and A.H. Ullah. 1996. Phytase. Adv. Appl. Microbiol. 42: 263-302   DOI
7 Choi, W. C., B. C. Oh, H. K. Kim, S. C. Kang, and T. K. Oh. 2002. Characteriztion and cloning of a phytase from Escherichia coli WC7. Kor. J. Microbiol. Biotechnol. 30: 17
8 Kim, D. H., B. C. Oh, W. C. Choi, J. K. Lee, and T. K. Oh. 1999. Enzymatic evaluation of Bacillus amyloliquefaciens phytase as a feed additive. Biotechnol. Lett. 21: 925-927   DOI   ScienceOn
9 Tye, A. J., F. K. Y. Siu, T. Y. C. Leung, and B. L. Lim. 2002. Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis. Appl. Microbiol. Biotechnol. 59: 190-197   DOI
10 Angelis, M., G. Gallo, M. Rosaria, P. McSqweeney, M. Faccia, M. Giovine, and M. Gobbetti. 2003. Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int. J. Food Microbiol. 87: 259-270   DOI   ScienceOn
11 Dvorakova, J., O. Volfova, and J. Kopecky. 1997. Characterization of phytase produced by Aspergillus niger. Folia Microbiol. 42: 349-352   DOI
12 Kim, K. H., H. S. Yang, Y. J. Choi, and H. C. Yang. 1982. Studies on the conditions of extracellular phytase production by Aspergillus niger. Kor. J. Microbiol. Biotechnol. 10: 133-144   과학기술학회마을
13 Choi, Y. M., D. O. Noh, S. H. Cho, H. K. Lee, H. J. Suh, and S. H. Chung. 1999. Isolation of a phytase-producing Bacillus sp. KHU-10 and its phytase production. J. Microbiol. Biotechnol. 9: 223-226
14 Nagashima, T., T. Tange, and H. Anazawa. 1999. Dephosphorylation of phytate by using the Aspergillus niger phytase with a high affinity for phytate. Appl. Environ. Microbiol. 65: 4682-4684
15 Seok. E. K., T. H. Kim, J. C. Lee, P. K. Chung, and K. K. Lee. 1987. Lowering of serum cholesterol by Lactobacillus sporogenes. Yakhak Hoeji. 31: 302-307
16 Bae, H. D., L. J. Yanke, K. J. Cheng, and L. B. Selinger. 1999. A novel staining method for detecting phytase activity. J. Microbiol. Methods. 39: 17-22   DOI
17 Nair, V.C., J. Laflamme, and Z. Uvnjak. 1991. Production of phytase by Aspergillus jicuum and reduction of phytic acid content in canolameal. J. Sci. Food Agric. 54: 355-365   DOI
18 Kerovuo, J., I. Lappalainen, and T. Reinikainen. 2000. The metal dependence of Bacillus subtilis phytase. Biochem. Biophys. Res. Commun. 268: 365-369   DOI   ScienceOn
19 Kim. H. S., S. S. Choi, E. C. Choi, B. K. Kim, J. C. Lee, and T. H. Kim. 1989. Development of Lactobacillus sporogenes resistant to rifampicin, an antituberculosis agent. Kor. J. Microbiol. 27: 155-161
20 Kim, Y. H., S. Y. Yang, D. Y. Kim, C. W. Kim, W. H. Jung, M. N. Gwon, and M. D. Song. 2001. Isolation of Enterobacter cloacae producing phytase and medium optimization of its production. Kor. J. Microbiol. Biotechnol. 29: 78-83   과학기술학회마을
21 Kim, Y. O., J. K. Lee, B. C. Oh, and T. K. Oh. 1999. Highlevel expression of a recombinant thermostable phytase in Bacillus subtilis. Biosci. Biotechnol. Biochem. 63: 2205-2207   DOI   ScienceOn
22 Papagianni, M., S. E. Nokes, and K. Filer. 2000. Production of phytase by Aspergillus niger in submerged and solid-state fermentation. Process Biochem. 35: 397-402   DOI   ScienceOn
23 Shimizu, M. 1992. Purification and characterization of phytase from Bacillus subtilis (Natto) n-77. Biosci. Biotechnol. Biochem. 56: 1266-1269   DOI
24 Tanner, J. T. and S. A. Bamett. 1986. Methods of analysis for infant formula: Food and drug administration and infant formula council collaborative study, phase III. J. Assoc. Off. Anal. Chem. 69: 777-785
25 Gong, N., C. Chen, L. Xie, and H. Chen. 2005. Characterization of a thermostable alkaline phosphatase from a novel species Thermus yunnanensis sp. novo and investigation of its cobalt activation at high temperature. Biochim. Biophys. Acta 1750: 103-111
26 Kim, Y. O., J. K. Lee, H. K. Kim, J. H. Yu, and T. K. Oh. 1998. Cloning of the thermostable phytase gene(phy) from Bacillus sp. DS 11 and its over-expression in Escherichia coli. FEMS Microbiol. Lett. 162: 185-191   DOI