• 제목/요약/키워드: Metal printing

검색결과 335건 처리시간 0.029초

스크린 프린팅 태양전지의 후면에 적용되기 위한 Al 특성 분석에 관한 연구

  • 이재두;김민정;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.272-272
    • /
    • 2009
  • Screen-printing metal contact is typically applied to the solar cells for mass production. And metal paste is used widely for rear contact formation of silicon solar cells. However, Screen-printing solar cell metal paste contact has low aspect ratio, low accuracy, high resistivity, hard control of unclean process. In this paper is to develop resistivity of rear contact for silicon solar cells applications. 4-point prove result, This resistivity of rear contact by Al evaporation was measured about $3.56{\times}10^6{\Omega}{\cdot}cm$ less than screen printed solar cell about $52.6{\times}10^6{\Omega}{\cdot}cm$.

  • PDF

Electric Circuit Fabrication Technology using Conductive Ink and Direct Printing

  • 정재우;김용식;윤관수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.12.1-12.1
    • /
    • 2009
  • For the micro conductive line, memory device fabrication process use many expensive processes such as manufactur-ing of photo mask, coating of photo resist, exposure, development, and etching. However, direct printing technology has the merits about simple and cost effective processes because nano-metal particles contained inks are directly injective without mask. And also, this technology has the advantage about fabrication of fine pattern line on various substrates such as FPCB, PCB, glass, polymer and so on. In this work, we have fabricated the fine and thick metal pattern line on flexible PCB substrate for the next generation electronic circuit using Ag nano-particles contained ink. To improve the line tolerance on flexible PCB, metal lines are fabricated by sequential prinitng method. Sequential printing method has vari-ous merits about fine, thick and high resolution pattern lines without bulge.

  • PDF

금속 3D 프린팅을 통한 맞춤형 차폐블록 제작에 사용되는 차폐 재료 검증 (Verification of Shielding Materials for Customized Block on Metal 3D Printing)

  • 정경환;한동희;김장오;최현준;백철하
    • 한국방사선학회논문지
    • /
    • 제17권1호
    • /
    • pp.25-30
    • /
    • 2023
  • 의료분야에 3D 프린팅 기술이 활용됨에 따라 금속 재료에 대한 관심이 높아지고 있다. 방사선종양학과에서는 전자선 치료 시 환자의 정상조직에 대한 불필요한 피폭을 차폐하기 위해 차폐블록을 사용하고 있다. 하지만, 납(Lead)과 카드뮴(Cadmium) 같은 중금속 물질의 취급, 숙련도에 따른 재현성과 배치의 불확실성 등에 대한 문제점이 보고되고 있다. 본 연구에서는 금속 3D 프린팅에 사용될 수 있는 재료별 물리적 특성 및 방사선량을 분석하여 전자선 치료 시 활용할 수 있는 맞춤형 차폐블록을 개발하고자 한다. 후보 재료는 알루미늄 합금(d = 2.68 g/cm3), 티타늄 합금(d = 4.42 g/cm3), 코발트 크롬 합금(d = 8.3 g/cm3)을 선별하였다. 10 × 10 cm2 조사면, 6, 9, 12, 16 Me V 에너지로 몬테카를로 시뮬레이션을 이용하여 차폐율 95% 지점의 두께를 도출하였다. 시뮬레이션 결과, 금속 3D 프린팅 재료 중 코발트 크롬 합금(d = 8.35 g/cm3)이 에너지별 차폐두께에서 기존 차폐블록(d = 9.4 g/cm3)과 유사하였다. 향후 금속 3D 프린팅으로 제작한 맞춤형 차폐블록을 이용하여 임상에서의 유용성 검증 평가 및 다양한 방사선 치료계획 조건 등을 통한 실험 검증이 필요할 것으로 사료된다.

스크린 프린팅 공정에 의해 제조된 열전후막모듈의 전기저항에 미치는 금속코팅층의 영향 (Influence of Metal-Coating Layer on an Electrical Resistivity of Thick-Film-Type Thermoelectric Modules Fabricated by a Screen Printing Process)

  • 김경태;구혜영;하국현
    • 한국분말재료학회지
    • /
    • 제18권5호
    • /
    • pp.423-429
    • /
    • 2011
  • Thermoelectric-thick films were fabricated by using a screen printing process of n and p-type bismuth-telluride-based pastes. The screen-printed thick films have approximately 30 ${\mu}m$ in thickness and show rough surfaces yielding an empty gap between an electrode and the thick film. The gap might result in an increase of an electrical resistivity of the fabricated thick-film-type thermoelectric module. In this study, we suggest a conductive metal coating onto the surfaces of the screen-printed paste in order to reduce the contact resistance in the module. As a result, the electrical resistivity of the thermoelectric module having a gold coating layer was significantly reduced up to 30% compared to that of a module without any metal coating. This result indicates that an introduction of conductive metal layers is effective to decrease the contact resistivity of a thick-film-typed thermoelectric module processed by screen printing.

압전 프린트 헤드에 의한 금속프린팅의 미세패턴제어 (Micro Pattern Control of Metal Printing by Piezoelectric Print-head)

  • 윤신용;최근수;백수현;장홍순;서상현
    • 한국전기전자재료학회논문지
    • /
    • 제24권2호
    • /
    • pp.147-151
    • /
    • 2011
  • We were analyzed the piezoelectric characteristic for electronics printing to inkjet printing system. These applications were possible use to Actuator, MEMS, FPCB, RFID, Solar cell and LCD color filter etc. Piezoelectric print head is firing from ink droplet control consideration ink viscosity properties. At this time, micro pattern for PCB metal printing was possible by droplet control of piezoelectric driving. These driving characteristics are variable voltage pulse waveform. We are used the piezoelectric analysis software of Finite Element Method (FEM), Piezoelectric design parameters are acquired from piezoelectric analysis, and measurement of piezoelectric. It designed for piezoelectric head to possible electric print pattern of inkjet printing system. For this validity we were established through in comparison with simulation and measurement. Designed piezoelectric specification obtained voltage 98V, firing frequency 10 kHz, resolution 360dpi, drop volume 20pl, nozzle number 256, and nozzle pitch 0.33 mm.

금속 3D 프린팅으로 보수된 AISI H13 금형강 마모특성 평가 (Evaluation of Wear Characteristics of AISI H13 Tool Steel Repaired by Metal 3D Printing)

  • 이성윤;이인규;정명식;이재욱;이선봉;이상곤
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.9-15
    • /
    • 2017
  • In hot forming process, the dies in which excessive worn or crack occurs is reused after repair. Generally hot forming dies are recycled through a welding repair method. Welding repair methods are highly dependent on the skills of engineer. It causes process defects such as dimensional defects and structural defects. Recently, the metal 3D printing method has been applied to the repair of used dies. The aim of this study is to evaluate the wear characteristics of AISI H13 tool steel repaired by 3D printing method. Three kinds of wear specimens were fabricated by using 3D printing, welding, and initial material. A pin-on-disk wear test was carried out to evaluate the wear characteristics. From the result of wear test, the wear characteristics of 3D printing method was superior to that of the welded material, and was similar to that of the initial material.

치과용 3D 프린팅 시스템에 의해 출력된 보철물의 품질 평가 (An evaluation of quality of dental prostheses printed by dental 3-dimensional printing system)

  • 한만소
    • 대한치과기공학회지
    • /
    • 제38권3호
    • /
    • pp.185-191
    • /
    • 2016
  • Purpose: The purpose of this study were to evaluate the quality of dental prostheses printed by 3-dimensional printing system. Methods: Mater model was prepared and ten study models were fabricated. Ten single crowns were printed by 3D-printing system(Resin group) and another ten single crowns using casting method were manufactured(Metal group). The marginal adaptation of single crowns were measured using by silicone replica technique. Silicone replicas were sectioned four times. The marginal adaptations were evaluated using by digital microscope. Statistical analyses were performed with Mann-Whitney test(${\alpha}=0.05$). Results: $Mean{\pm}standard$ deviations of all marginal adaptations were $92.1(20.0){\mu}m$ for Metal group and $69.7(12.3){\mu}m$ for Resin group. Two groups were no statistically significant differences(p>0.05). Conclusion: Marginal adaptation of single crowns printed by 3D-printing system were ranged within the clinical recommendation.

잉크젯 프린팅 기술을 이용한 기판 표면처리와 금속 패턴 형성에 관한 연구 (A Study of Substrate Surface Treatment and Metal Pattern Formation using Inkjet Printing Technology)

  • 조용민;박성준
    • 한국분무공학회지
    • /
    • 제17권1호
    • /
    • pp.20-26
    • /
    • 2012
  • Inkjet printing is one of the direct writing technologies and is able to form a pattern onto substrate by dispensing droplets in desired position. Also, by inkjet technology manufacturing time and production costs can be reduced, and procedures can be more efficient. To form a metal pattern, it must be harmonized with conductive nano ink, printing process, sintering, and surface treatment. In this study, micro patterning of conductive line has been investigated using the piezoelectric printhead driven by a bipolar voltage signal is used to dispense $20-40{\mu}m$ diameter droplets and silver nano ink which consists of 50 nm silver particles. In addition, hydrophobic treatment of surface, overlap printing techniques, and sintering conditions with changing temperature and times to achieve higher conductivity.

3 차원 프린팅 기술을 이용한 신개념 경수로 핵연료 기술 개발에 관한 연구 (Development of Innovative Light Water Reactor Nuclear Fuel Using 3D Printing Technology)

  • 김효찬;김현길;양용식
    • 한국정밀공학회지
    • /
    • 제33권4호
    • /
    • pp.279-286
    • /
    • 2016
  • To enhance the safety of nuclear reactors after the Fukushima accident, researchers are developing various types of accident tolerant fuel (ATF) to increase the coping time and reduce the generation of hydrogen by oxidation. Coated cladding, an ATF concept, can be a promising technology in view of its commercialization. We applied 3D printing technology to the fabrication of coated cladding as well as of coated pellets. Direct metal tooling (DMT) in 3D printing technologies can create a coated layer on the tubular cladding surface, which maintains stability during corrosion, creep, and wear in the reactor. A 3D laser coating apparatus was built, and parameter studies were carried out. To coat pellets with erbium using this apparatus, we undertook preliminary experiments involving metal pellets. The adhesion test showed that the coated layer can be maintained at near fracture strength.

3 차원 프린팅 기술의 열간 체적 성형 공정 적용에 관한 기초 연구 - 예비형상 설계 예 및 열간 금형강으로 적층된 표면 특성 분석 (A Preliminary Study on the Application of Three-Dimensional (3D) Printing Technologies to Hot Bulk Forming Processes - Example of Preform Design and Investigation of Hot-working Tool Steel Deposited Surface)

  • 안동규;김세훈;이호진
    • 한국정밀공학회지
    • /
    • 제31권12호
    • /
    • pp.1093-1100
    • /
    • 2014
  • The goal of this paper is to investigate preliminary the applicability of 3D printing technologies for the development of the hot bulk forming process and die. 3D printing technology based on the plastic material was applied to the preform design of the hot forging process. Plastic hot forging dies were fabricated by Polyjet process for the physical simulation of the workpiece deformation. The feasibility of application of Laser-aided Direct Metal Rapid Tooling (DMT) process to the fabrication of the hot bulk metal forming die was investigated. The SKD61 hot-working tool steel was deposited on the heat treated SKD61 using the DMT process. Fundamental characteristics of SKD 61 hot-working tool steel deposited specimen were examined via hardness and wear experiments as well as the observation of the morphology. Using the results of the examination of fundamental characteristics, the applicability of the DMT process to manufacture hot bulk forming die was discussed.