• Title/Summary/Keyword: Metal powder sintering

Search Result 233, Processing Time 0.029 seconds

EFFICIENT SINTERING AND HARDENING OF LOW ALLOY IRON POWDER COMPACTS IN ONE STEP IN THE CONVEYOR BELT SINTERING FURNACE

  • Warga, Diter;Lindberg, Caroline
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1994.04c
    • /
    • pp.7-7
    • /
    • 1994
  • For more than a decade components of low alloy iron powder with nickel and/or molybdenum for general engineering applications have been manufactured from powder metal. In the time to come such PM steel components will gain increasing significance. Because of various manufacturing difficulties they are mostly produced in two separate steps - sintering and hardening - which means high energy and labour requirements. The paper describes how such PM components are produced in just one run through a conveyor belt furnace with automatic atmosphere control and gas quenching zone. Energy and labour costs are low and reproducible quality is exceilent. The mechanical properties obtained with some powder alloys are presented as well.

  • PDF

Attrition Milling and Reaction-sintering of the Oxide-Metal Mixed Powders: II. Reaction-sintering Behavior as the Milling Characteristics of Powders (산화물과 금속 복합 분말의 Attrition Milling 및 반응소결: II. 분말의 분쇄특성에 따른 반응소결 거동)

  • 황규홍;김의훈
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.448-456
    • /
    • 1994
  • The reaction-sintered alumina and zirconia-alumina ceramics were fabricated from the Al/Al2O3 or Zl/ZrO2(Ca-PSZ) powder mixtures via the attrition milling. And the effects of the milling characteristics of used raw powders on reaction sintering were investigated. After attrition milling and isopressing at 400 MPa the Al/Al2O3 specimen was oxidated at 1200℃ for 8 hours followed by sintering at 1550℃ for 3 hours. Because mixed powders of flake-type Al with coarse alumina was much more effectively comminuted than the globular-type Al with coarse alumina powders, it's sintered body of more than 97% theoretical density was achived, but low contents of Al leads to relatively higher shrinkage of about 8%. And because coarse alumina particles was much more beneficial in cutting and reducing the ductile Al particles, using the coarse alumina powder was much more effective in reaction sintering. Fused Ca-PSZ powder was reaction sintered with Al at 1550℃ for 3 hours and low shrinkage ZrO2-Al2O3 composites were fabricated. But because Al/Ca-PSZ powder mixtures were not effectively milled the reaction sintering and densification was difficult. And the Ca ion in Ca-PSZ grains diffused into alumina grains during sintering so that the unstabilization of Ca-PSZ body was occured which gave the microcracks in the specimens.

  • PDF

Improvments in Cost Reduction for Vacuum Sintering and Vacuum and Overpressure Sintering for Tungsten Carbides

  • Ermel, Dieter
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.293-298
    • /
    • 1998
  • In all larger hardmetal workshops furnaces for dewaxing, vacuum sintering or vacuum and overpressure sintering are today's standard. The furnace technology is well established. Equipment specifications such as operating overpressure, determine sintering cost, product quality, safety and reliability of the furnace and ultimately influence the competitiveness of the hard metal procucer in the global market. Essential furnace requirements are an efficient utilization of the furnace, an environmental friendly dewaxing system, high temperature uniformity, metallurgical treatment with process gases, as well as reduced cooling time by means of rapid cooling. Examples of reduced sintering costs are described achieved using a new design of vacuum sintering furnace with an improved rapid cooling device, cooling times are reduced by up to 45%. Additionally, a cost comparison of two different designs of vacuum overpressure sintering furnaces are included.

  • PDF

Laser Processing Technology using Metal Powders (금속분말의 레이저 공정 기술)

  • Jang, Jeong-Hwan;Moon, Young-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.191-200
    • /
    • 2012
  • The purpose of this paper is to review the state of laser processing technology using metal powders. In recent years, a series of research and development efforts have been undertaken worldwide to develop laser processing technologies to fabricate metal-based parts. Layered manufacturing by the laser melting process is gaining ground for use in manufacturing rapid prototypes (RP), tools (RT) and functional end products. Selective laser sintering / melting (SLS/SLM) is one of the most rapidly growing rapid prototyping techniques. This is mainly due to the processes's suitability for almost any materials, including polymers, metals, ceramics and many types of composites. The interaction between the laser beam and the powder material used in the laser melting process is one of the dominant phenomena defining feasibility and quality. In the case of SLS, the powder is not fully melted during laser scanning, therefore the SLS-processed parts are not fully dense and have relatively low strength. To overcome this disadvantage, SLM and laser cladding (LC) processes have been used to enable full melting of the powder. Further studies on the laser processing technology will be continued due to the many potential applications that the technology offers.

Mechanical Properties of Surface Densified PM Gears (표면치밀화 기술에 의해 제조된 소결 기어의 기계적 특성)

  • Kim, Ki-Jung;Kim, Ki-Bum;Lee, Doo-Hwan;Park, Jong-Kwan;Jeong, Dong-Guk
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.189-195
    • /
    • 2012
  • A novel PM (powder metallurgy) steel for automotive power-train gear components was developed to reduce manufacturing cost, while meeting application requirements. The high-density PM steel was manufactured by mixing using special Cr-Mo atomized iron powders, high-pressure compaction, and sintering. Tensile strength, charpy impact, bending fatigue, and contact fatigue tests for the PM steel were carried out and compared to conventional forged steel. Pinion gears for auto-transmission were also manufactured by helical pressing, sintering, and surface densification process. In order to evaluate the durability of the PM parts, auto-transmission durability tests were performed using dynamometer tests. Results showed that the PM steel fulfilled the requirements for pinion gears indicating suitable tensile, bending fatigue, contact fatigue strengths and improved gear tooth profile. The PM gears also showed good performance during the transmission durability tests. As a result, the PM gears showed significant potential to replace the conventional forged steel gears manufactured by tooth machining (hobbing, shaving, and grinding) processes.

The Effect of Fe-Oxide Addition on the Sintered Structure of Cast Iron Power (주철분말(鑄鐵粉末)의 소결조직(燒結組織)에 미치는 산화철(酸化鐵) 첨가(添加)의 효과(效果))

  • Kim, Hyung-Soo;Kim, Chul-Bohm;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.10 no.2
    • /
    • pp.154-161
    • /
    • 1990
  • The microstructures of sintered products of $Fe_2O_3$or $Fe_3O_4$-Oxide added cast iron powder was investigated. And the effects of particle size distribution was investigated too. As the result, the structures of sintered products did not related to the species of Fe-Oxide. Th porosity of sintered products was decreased in size and spherodized with increasing sintering temperature, decreasing Fe-Oxide quantity. Fe-Oxide itself did not hinder sintering of cast iron powder particularly, therefore sintering could be occurred without termination of reduction of it. And the sintered products of finer particle size distribution had finer and more spherodized porosity, and had minimized the deviation of size and shape of porosity.

  • PDF

The Effect of Chemical Composition of Sintering Atmosphere on the Structure and Mechanical Properties of PM Manganese Steels with Chromium and Molybdenum Additions

  • Sulowski, Maciej;Cias, Andrzej;Stoytchev, Marin;Andreev, Tchavdar
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.561-562
    • /
    • 2006
  • The effect of chemical composition of the sintering atmosphere on density, microstructure and mechanical properties of Fe-3%Mn-(Cr)-(Mo)-0.3%C steels is described. Pre-alloyed Astaloy CrM and CrL, ferromanganese and graphite were used as the starting powders. Following pressing in a rigid die, compacts were sintered at 1120 and $1250^{\circ}C$ in atmospheres having different $H_2/N_2$ ratio and furnace cooled to room temperature. It has been found that the atmosphere composition has negligible effect on the as-sintered properties of the investigated materials.

  • PDF

Synthesis and Compaction of Al-based Nanopowders by Pulsed Discharge Method

  • Rhee, Chang-Kyu;Lee, Geun-Hee;Kim, Whung-Whoe
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.433-440
    • /
    • 2002
  • Synthesis and compaction of Al-base nano powders by pulsed discharge method were investigated. The aluminum based powders with 50 to 200 nm of diameter were produced by pulsed wire evaporation method. The powders were covered with very thin oxide layer. The perspective process for the compaction and sintering of nanostructured metal-based materials stable in a wide temperature range can be seen in the densification of nano-sized metal powders with uniformly distributed hard ceramic particles. The promising approach lies in utilization of natural uniform mixtures of metal and ceramic phases, e.g. partially oxidized metal powders as fabricated in our synthesis method. Their particles consist of metal grains coated with oxide films. To construct a metal-matrix material from such powder, it is necessary to destroy the hard oxide coatings of particles during the compaction process. This goal was realized in our experiments with intensive magnetic pulsed compaction of aluminum nanopowders passivated in air.