• Title/Summary/Keyword: Metal post

Search Result 514, Processing Time 0.028 seconds

Analysis of Carbon Migration with Post Weld Heat Treatment in Dissimilar Metal Weld. (이종금속 피복용접부의 후열처리에 따른 탄소이동 해석)

  • Kim, Byeong-Cheol;Ann, Hui-Seong;Kim, Seon-Jin;Song, Jin-Tae
    • Korean Journal of Materials Research
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 1991
  • Pressurized Water Reactor (PWR) pressure vessels are made of forged low alloy steel plates internally clad with an austenitic stainless steel by welding to improve anti-corrosion properties. They display a characteristic behavior of dissimilar metal weld interface during post weld heat treatment (PWHT) and service at high temperature and pressure. In this Study, Metallugical structure of weld interface of SA 508 Class 3 forged steel clad with 309L, Austenitic stainless steel after PWHT was investigated. To estimate the width of the carburized/decarburized bands quantitatively, a model for carbon diffusion was proposed and a theoretical equation was derived.

  • PDF

Effect of post-annealing on single-walled carbon nanotubes synthesized by arc-discharge

  • Park, Suyoung;Choi, Sun-Woo;Jin, Changhyun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.4
    • /
    • pp.388-394
    • /
    • 2019
  • In this study, high-purity single-walled carbon nanotubes (SWCNTs) were prepared by removing the unreacted metal constituents and amorphous carbon impurities using a post-annealing process. Unlike conventional thermal processing techniques, this technique involved different gas atmospheres for efficient removal of impurities. A heat treatment was conducted in the presence of chlorine, oxygen, and chlorine + oxygen gases. The nanotubes demonstrated the best characteristics, when the heat treatment was conducted in the presence of a mixture of chlorine and oxygen gases. The scanning electron microscopy, transmission electron microscopy, ultraviolet absorbance, and sheet resistance measurements showed that the heat treatment process efficiently removed the unreacted metal and amorphous carbon impurities from the as-synthesized SWCNTs. The high-purity SWCNTs exhibited improved electrical conductivities. Such high-purity SWCNTs can be used in various carbon composites for improving the sensitivity of gas sensors.

Characteristics of Hafnium Silicate Films Deposited on Si by Atomic Layer Deposition Process

  • Lee, Jung-Chan;Kim, Kwang-Sook;Jeong, Seok-Won;Roh, Yong-Han
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.127-130
    • /
    • 2011
  • We investigated the effects of $O_2$ annealing (i.e., temperature and time) on the characteristics of hafnium silicate ($HfSi_xO_y$) films deposited on a Si substrate by atomic layer deposition process (ALD). We found that the post deposition annealing under oxidizing ambient causes the oxidation of residual Hf metal components, resulting in the improvement of electrical characteristics (e.g., hysteresis window and leakage current are decreased). In addition, we observed the annealing temperature is more important than the annealing time for post deposition annealing. Based on these observations, we suggest that post deposition annealing under oxidizing ambient is necessary to improve the electrical characteristics of $HfSi_xO_y$ films deposited by ALD. However, the annealing temperature has to be carefully controlled to minimize the regrowth of interfacial oxide, which degrades the value of equivalent oxide thickness.

A Study on the Post-Weld Heat Treatment Effect Affecting Corrosion Behavior and Mechanical Property of Welding Part of RE36 Steel for Marine Structure (해양구조물용 RE36강 용접부의 부식거동 및 기계적 특성에 미치는 용접후 열처리 효과에 관한 연구)

  • 김성종;문경만
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.65-74
    • /
    • 2001
  • A study on the corrosion behavior in case of As-welded and PWHT temperature 55$0^{\circ}C$ of welding part of RE36 steel for marine structure was investigated with parameters such as micro-Vickers hardness, corrosion potential measurement of weld metal(WM), base metal(BM) and heat affected zone(HAZ), both Al anode generating current and Al anode weight loss quantity under sacrificial anode cathodic protection conditions. And also we carried out slow strain rate test(SSRT) in order to research both limiting cathodic polarization potential for hydrogen embrittlement and optimum cathodic protection potential as well as mechanical properties by post-weld heat treatment(PWHT) effect. Hardness of HAZ was the highest among three parts(WM, BM and HAZ) and the highest galvanic corrosion susceptibility was HAZ. And the optimum cathodic polarization potential showing the best mechanical properties by SSRT method was from -770mV to -875mV(SCE). In analysis of SEM fractography, applied cathodic potential from -770mV to -875mV(SCE) it appeared dimple pattern with ductile fracture while it showed transgranular pattern (Q. C : quasicleavage) under -900mV(SCE). However it is suggested that limiting cathodic polarization potential indicating hydrogen embrittlement was under -900mV(SCE).

  • PDF

Effect of Bonding Misfit on Single Crystallization of Transient Liquid Phase Bonded Joints of Ni Base Single Crystal Superalloy (단결정 Ni기 초내열합금 액상확산접합부 단결정화에 미치는 접합방위차의 영향)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.93-98
    • /
    • 2002
  • The effect of bonding misfit on single crystallization of transient liquid phase (TLP) bonded joints of single crystal superalloy CMSX-2 was investigated using MBF-80 insert metal. The bonding misfit was defined by (100) twist angle (rotating angle) at bonded interface. TLP bonding of specimens was carried out at 1523K for 1.8ks in vacuum. The post-bond heat treatment consisted of the solution and sequential two step aging treatment was conducted in the Ar atmosphere. The crystallographic orientation analysis across the TLP bonded joints was conducted three dimensionally using the electron back scattering pattern (EBSP) method. EBSP analyses f3r the bonded and post bonded heat treated specimens were conducted. All bonded joints had misorientation centering around the bonded interface for as-bonded and post-bond heat treated specimens with rotating angle. The average misorientation angle between both solid phases in bonded interlayer was almost identical to the rotating angle at bonded interface. HRTEM observation revealed that the atom arrangement of both solid phases in bonded interlayer was quite different across the bonded interface. It followed that grain boundary was formed in bonded interface. It was confirmed that epitaxial growth of the solid phase occurred from the base metal substrates during TLP bonding and single crystallization could not be achieved in joints with rotating angle.

An Electrochemical Property Stud on the Corrosion Behavior of Welding Part of RE36 Steel for Marine Structure (해양구조물용 RE36강의 용접부 부식거동에 관한 전기화학적 특성 연구)

  • 김성종;김진경;문경만
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.70-76
    • /
    • 2000
  • The effect of Post Weld Heat Treatment(PWHT) of RE36 steel for marine structure was investigated with parameters such as micro-vickers hardness, corrosion potential and corrosion current density of weld metal(WM), base metal(BM) and heat affected zone(HAZ), and both Al alloy anode generating current and Al alloy anode weight loss quantity etc. Hardness of post-weld heat treated BM, WM and HAZ is lower than that of As-welded condition of each region. However, hardness of HAZ was the highest among those three parts regardless of PWHT temperature and corrosion potential of WM was the highest among those three parts without regard to temperature and corrosion potential of WM was the highest among those three parts without regard to PWHT temperature. The amplitude of corrosion potential difference of each other three parts at PWHT temperature $550^{\circ}C$, $650^{\circ}C$ are smaller than that of three parts by As-welded condition and corrosion current density obtained by PWHT was also smaller than that of As-welded condition. Eventually, it was known that corrosion resistance was increased by PWHT. However both Al anode generating current and anode weight loss quantity were also decreased by PWHT compare to As-welded condition when RE36 steel is cathodically protected by Al anode. Therefore, it is suggested that the optimum PWHT temperature with increasing corrosion resistance and cathodic protection effect is $550^{\circ}C$.

  • PDF

Effect of chemical in post Ru CMP Cleaning solutions on abrasive particle adhesion and removal (Post Ru CMP Cleaning에서 연마입자의 흡착과 제거에 대한 chemical의 첨가제에 따른 영향)

  • Kim, In-Kwon;Kim, Tae-Gon;Cho, Byung-Gwun;Son, Il-Ryong;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.529-529
    • /
    • 2007
  • Ruthenium (Ru) is a white metal and belongs to platinum group which is very stable chemically and has a high work function. It has been widely studied to apply Ru as an electrode material in memory devices and a Cu diffusion barrier metal for Cu interconnection due to good electrical conductivity and adhesion property to Cu layer. To planarize deposited Ru layer, chemical mechanical planarization(CMP) was suggested. However, abrasive particle can induce particle contamination on the Ru layer surface during CMP process. In this study, zeta potentials of Ru and interaction force of alumina particles with Ru substrate were measured as a function of pH. The etch rate and oxidation behavior were measured as a function of chemical concentration of several organic acids and other acidic and alkaline chemicals. PRE (particle removal efficiency) was also evaluated in cleaning chemical.

  • PDF

Removal of Post Etch/Ash Residue on an Aluminum Patterned Wafer Using Supercritical CO2 Mixtures with Co-solvents and Surfactants: the Removal of Post Etch/Ash Residue on an Aluminum Patterned Wafer

  • You, Seong-sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.55-60
    • /
    • 2017
  • The supercritical $CO_2$ (sc-$CO_2$) mixture and the sc-$CO_2$-based Photoresist(PR) stripping(SCPS) process were applied to the removal of the post etch/ash PR residue on aluminum patterned wafers and the results were observed by scanning of electron microscope(SEM). In the case of MDII wafers, the carbonized PR was able to be effectively removed without pre-stripping by oxygen plasma ashing by using sc-$CO_2$ mixture containing the optimum formulated additives at the proper pressure and temperature, and the same result was also able to be obtained in the case of HDII wafer. It was found that the efficiency of SCPS of ion implanted wafer improved as the temperature of SCPS was high, so a very large amount of MEA in the sc-$CO_2$ mixture could be reduced if the temperature could be increased at condition that a process permits, and the ion implanted photoresist(IIP) on the wafer was able to be removed completely without pre-treatment of plasma ashing by using the only 1 step SCPS process. By using SCPS process, PR polymers formed on sidewalls of metal conductive layers such as aluminum films, titanium and titanium nitride films by dry etching and ashing processes were removed effectively with the minimization of the corrosion of the metal conductive layers.

  • PDF

Thermal post-buckling behavior of imperfect graphene platelets reinforced metal foams plates resting on nonlinear elastic foundations

  • Yin-Ping Li;Gui-Lin She;Lei-Lei Gan;H.B. Liu
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.251-259
    • /
    • 2024
  • In this paper, the thermal post-buckling behavior of graphene platelets reinforced metal foams (GPLRMFs) plate with initial geometric imperfections on nonlinear elastic foundations are studied. First, the governing equation is derived based on the first-order shear deformation theory (FSDT) of plate. To obtain a single equation that only contains deflection, the Galerkin principle is employed to solve the governing equation. Subsequently, a comparative analysis was conducted with existing literature, thereby verifying the correctness and reliability of this paper. Finally, considering three GPLs distribution types (GPL-A, GPL-B, and GPL-C) of plates, the effects of initial geometric imperfections, foam distribution types, foam coefficients, GPLs weight fraction, temperature changes, and elastic foundation stiffness on the thermal post-buckling characteristics of the plates were investigated. The results show that the GPL-A distribution pattern exhibits the best buckling resistance. And with the foam coefficient (GPLs weight fraction, elastic foundation stiffness) increases, the deflection change of the plate under thermal load becomes smaller. On the contrary, when the initial geometric imperfection (temperature change) increases, the thermal buckling deflection increases. According to the current research situation, the results of this article can play an important role in the thermal stability analysis of GPLRMFs plates.